Способ исследования первичных гидроакустических полей шумящего объекта

Изобретение относится к области гидроакустики и может быть использовано для исследований параметров первичных гидроакустических полей надводных и подводных плавсредств. Техническим результатом изобретения является повышение информативности об исследуемых первичных гидроакустических полях первичного объекта. Способ заключается в расположении гидроакустического приемного модуля в заданной области натурного водоема, направлении к приемному модулю исследуемого шумящего объекта и измерении приемным модулем параметров шумящего объекта при последующей обработке последних на компьютере. При этом в качестве приемного модуля используют комбинированный гидроакустический приемник с разнесенными в пространстве в пределах приемного модуля векторным приемником и приемником звукового давления на расстояние, не превышающее 0,2λ, где λ - минимально регистрируемая длина звуковой волны в спектре шумоизлучения шумящего объекта. В качестве измеряемого приемным модулем параметра используют акустическую мощность шумящего объекта, измеряемую в плоскости, ориентированной вдоль траектории движения объекта. 1 ил.

 

Изобретение относится к области гидроакустики и может быть использовано для исследования параметров первичных гидроакустических полей надводных и подводных плавсредств.

Известны способы исследования первичных гидроакустических полей надводных и подводных шумящих объектов, заключающиеся в расположении гидроакустического приемного модуля (ПМ) в заданной области натурного водоема, направлении к ПМ исследуемого шумящего объекта и измерении ПМ параметров шумящего объекта при последующей обработке последних на компьютере [Патенты РФ №2010456, №2063106, №2108007, №2141739, №2141740, кл. H04R 1/44].

Любой из известных способов может быть принят за прототип.

В прототипе в качестве ПМ используют приемник звукового давления (гидрофон), а в качестве измеряемого ПМ параметра шумящего объекта - уровень звукового давления.

Недостатком прототипа является невысокая информативность проводимых исследований, вызванная низким соотношением сигнал/шум на выходе ПМ.

Техническим результатом, получаемым от внедрения изобретения, является повышение информативности об исследуемых первичных гидроакустических полях шумящего объекта.

Данный технический результат достигается за счет того, что в известном способе исследования первичных гидроакустических полей шумящего объекта, заключающемся в расположении гидроакустического ПМ в заданной области натурного водоема, направлении к ПМ исследуемого шумящего объекта и измерении ПМ параметров шумящего объекта при последующей обработке последних на компьютере, в качестве ПМ используют комбинированный гидроакустический приемник с разнесенными в пространстве на расстояние, не превышающее 0,2λ в пределах ПМ векторным приемником и приемником звукового давления, а в качестве измеряемого ПМ параметра - акустическую мощность шумящего объекта, измеряемую в плоскости, ориентированной вдоль траектории движения объекта, где λ - минимально регистрируемая длина звуковой волны в спектре шумоизлучения исследуемого шумящего объекта.

Сущность способа заключается в том, что с точки зрения получения исходных данных для описания процессов распространения звуковой волны, измерения акустического давления Р и колебательной скорости V равнозначны. С практической точки зрения возможность измерения в точке значений колебательной скорости (векторной величины) и звукового давления (скалярной величины) избавляют от необходимости построения пространственно развитых систем измерения акустического давления с последующим вычислением его производных.

Измеряемой величиной по общепринятому определению является математическое ожидание максимума квадрата звукового давления, измеренное на прямой, отстоящей от корпуса корабля на дистанции 50 м в однородной, безграничной, обесшумленной среде в третьоктавных полосах частот. В указанных условиях квадрат звукового давления выражает акустическую мощность источника на приведенном расстоянии. Но, говоря об измерении в точке, а не по всей поверхности волнового фронта, следует говорить об акустической мощности через элемент поверхности или равнозначно о плотности потока звуковой энергии (интенсивности звука).

В условиях измерений, приведенных в определении, для дальнего поля можно записать

где ρ - плотность воды;

с - скорость звука.

И тогда поток W звуковой энергии, определяемый через усредненное по времени произведение совпадающих по фазе компонентов мгновенного акустического давления и объемной колебательной скорости, будет равен

где τ - время измерения, равное или кратное периоду колебаний;

t - время.

В общем случае при реальных условиях измерений в результате взаимодействия волновых полей многих источников и их переотражения от границ среды волновода акустическая мощность носит комплексный характер. Действительная часть, собственно поток звуковой энергии в направлении г, определяется:

где Pэ - эффективное значение акустического давления;

Vэr - эффективное значение проекции вектора колебательной скорости на направление r;

ϕPV - разность фаз между акустическим давлением и колебательной скоростью.

Формула (3) в комплексном виде запишется:

Мнимая, реактивная плотность потока звуковой энергии, сосредоточенная в некотором объеме среды:

где Рэ - эффективное значение акустического давления;

Vэr - эффективное значение проекции вектора колебательной скорости на направление r;

ϕPV - разность фаз между акустическим давлением и колебательной скоростью.

Формула (5) в комплексном виде запишется:

Измеряемыми физическими величинами являются акустическое давление и колебательное ускорение частиц среды в точке расположения ПМ.

Способ реализуется по схеме, представленной на чертеже.

Шумящий объект 1 движется в плоскости, ортогональной плоскости чертежа. Шумоизлучение 2 объекта 1 принимается ПМ 3, состоящим из гидрофона 4 и векторного приемника 5, расположенные на расстоянии a≤0,2λ. Информация с выхода ПМ 3 направляется по кабелю 6 на обрабатывающую аппаратуру 7.

При реализации способа задача работы алгоритма - выделение действительной части потока звуковой энергии с заданного направления.

Для этого:

- плоскость измерений ориентируется в пространстве, направляя ось x на траверз, у вдоль траектории;

- сигналы акустического давления, ортогональных составляющих колебательной скорости, представляются в комплексном виде в частотной области, выполнением операции быстрого преобразования Фурье (БПФ);

- вычисляется по приведенной формуле (4) проекция действительной части потока звуковой энергии на оси системы координат, связанной с векторным приемником;

- в горизонтальной плоскости измерений, направленной на траверз прохода объекта измерительной системы, вычисляются значение модуля потока звуковой энергии

и направление прихода звуковой волны

где WRx, WRy - проекции потоков звуковой энергии на оси X, Y соответственно;

- по вычисленным значениям производится построение гистограммы распределения потока по направлению в третьоктавной полосе частот. По каждому направлению накапливаются значения потока в узкой полосе частот в приделах частотного диапазона рассматриваемого третьоктавного фильтра. Таким образом, на каждый отсчет времени измерений формируется угловое распределение потока в полосе частот третьоктавного фильтра;

- гистограммы сводятся в диаграмму время-углового распределения потока в полосе частот третьоктавного фильтра;

- задавая диапазон азимутальных, телесных углов, определяют на каждый отсчет времени направление и величину сектора, в пределах которого осуществляется суммирование значений действительной части потока;

- строятся проходные характеристики, определяется их максимальное значение, приписываемое результату измерений.

Как следует из представленного выше алгоритма, объектом генерируется акустическое поле, процесс распространения которого сопровождается переносом энергии и характеризуется вектором потока звуковой энергии.

Задача алгоритма сводится к измерению действительной часть вектора потока звуковой энергии (акустической мощности), формируемой объектом, местоположение которого определено телесным ϑ и азимутальным ϕ углами в системе координат векторного приемника в каждый момент времени измерений.

В результате работы технических средств проведения измерений (ПМ 3 в виде комбинированного гидроакустического приемника и аппаратуры 7 в виде тракта усиления-передачи и АЦП) формируются фалы с оцифрованными электрическими сигналами канала давления P(ti) и ортогональных составляющих колебательного ускорения представляющие синхронные отсчеты соответствующих величин на момент измерения ti.

Выполняя операцию интегрирования отсчетов ортогональных составляющих колебательного ускорения, получаем значения колебательной скорости

Временные отсчеты сигналов акустического давления, ортогональных составляющих колебательной скорости, переносятся в частотную область выполнением операции умножения на множитель ехр(j2πfciΔt), где fc - центральная частота анализируемого диапазона, Δt - временной интервал дискретизации. Таким образом, выполняется операция БПФ, в результате которой получаем соотношения в спектральной области, определяемые как:

где Р(t), V(t) - текущие отсчеты акустического давления, колебательной скорости соответственно;

f - частота спектральной составляющей.

Результатом перемножения на комплексную экспоненту является комплексный спектр.

В результате получены комплексные спектры ортогональных составляющих колебательной скорости, акустического давления. По их значениям вычисляем проекции действительной WRx, WRy, WRz и мнимой WIx, WIy, WIz составляющих потока звуковой энергии на оси трехмерной системы координат, образованной направлениями векторного приемника. Действительные части определяются в соответствии с выражением:

Мнимые как

Возможно получение отсчетов Wx,,Δf, Wy,,Δf, Wz,Δf, применяя фильтрацию временных отсчетов сигналов акустического давления и колебательной скорости полосовыми 1/3 октавными фильтрами. Полученные временные проходные в полосах частот третьоктавных фильтров подвергаются БПФ и полученные комплексные спектры перемножаются в соответствии с приведенными выражениями, давая спектры действительной и мнимой частей проекций потока звуковой энергии в третьоктавных полосах частот.

Для построения углового распределения вектора потока акустической мощности в тонкой полосе частот, входящей в диапазон рассматриваемого третьоктавного фильтра, рассчитываются параметры результирующего вектора потока звуковой энергии на каждый момент времени измерений.

Модуль вектора потока звуковой энергии вычисляется как

Направление вектора определяется углом ϕ, отсчитываемым от оси Х системы координат, связанной с векторным приемником, по формуле:

Полученные значения Iϕf и ϕ являются входными данными при построении гистограммы распределения отсчетов модуля вектора потока звуковой энергии от отсчета азимутального угла в диапазоне частот заданного третьоктавного фильтра. Значение модуля в тонкой полосе частот откладывается в точке, соответствующей направлению прихода. Операция повторяется для каждого «тонкого» отсчета модуля вектора потока в пределах полосы частот третьоктавного фильтра. Т.о. производится накопление значение потока звуковой энергии в третьоктавной полосе в зависимости от направления на каждый временной отсчет измерений.

Полученные гистограммы сводятся в диаграмму время-углового распределения потока звуковой энергии Iϕ,Δf по направлению в полосе частот выбранного третьоктавного фильтра.

Операция получения такого распределения выполняется для каждого третьоктавного фильтра в пределах частотного диапазона измерений.

Для осуществления пространственной фильтрации из массива значений Iϕ,Δf потока звуковой энергии в третьоктавных полосах частот, распределенных по направлению прихода, на каждый отсчет времени выбираются и суммируются значения с направлений, определяемых диапазоном, заданным оператором, и соответствующих угловой траектории движения объекта относительно приемной системы. Для ограничения по вертикальному направлению прихода потока звуковой энергии в результате суммируются значения, для которых выполняется условие

где ϑ - величина полярного угла, заданная оператором с расчетом перекрытия углового протяжения объекта по вертикали.

В результате выполнения приведенных операций за результат измерений принимается максимальный уровень действительной части акустической мощности в третьоктавных полосах частот, зафиксированной с угловых направлений, определяемых траекторией движения объекта во время измерительного галса.

При геометрии эксперимента, когда приемник и источник находятся на разной глубине и разнесены по горизонтальному расстоянию, не исключены случаи галсирования объекта вне горизонтальной плоскости измерений XY, формируемой векторным приемником. Горизонтальная плоскость измерений XY ориентируется по азимутальному углу α, полярному углу θ на траверз прохода объектом измерительной системы. При этом проекции вектора потока на оси пересчитываются в соответствии с выражением:

Точность, результат работы алгоритма определяются его возможностью определить направление вектора потока акустической мощности, который постоянно флуктуирует в пространстве. Дисперсия направления вектора определяется соотношением сигнал/помеха в выбранной полосе частот. Предполагаем, что для «тонких» частотных полос, в которых производится вычисление потока акустической мощности, отношение сигнал/помеха достаточно для определения направления потока. И превалирующее влияние на формирование вектора потока оказывает единственный источник.

Последовательность действий оператора при работе с программным обеспечением (ПО), реализующим алгоритм пространственной фильтрации, будет следующий.

Воспользовавшись результатами сонографического анализа, выделяется дискретная составляющая, однозначно связанная с объектом. Время-угловое распределение потока звуковой энергии в частотной полосе третьоктавного фильтра, содержащего частоту дискретной составляющей, характеризует угловую траекторию движения объекта относительно приемной системы. По максимуму уровня определяются время траверза tmp и горизонтальное направление α на точку траверза, отсчитываемое от оси Х измерительной системы координат.

На время траверза производят отчет полярного угла ϑ прихода потока звуковой энергии. Таким образом, определяются угловые направления плоскости измерений: азимутального угла α поворота оси Х относительно исходного положения и телесного угла θ=ϑ подъема измерительной плоскости XY, сохраняемые на все время эксперимента при условии постоянства элементов траектории движения объекта в системе координат векторного приемника.

На диаграмме время-углового распределения потока звуковой энергии в измерительной плоскости ХαθYαθ оператором задается диапазон угловых направлений, в пределах которого производится суммирование модуля действительной части акустической мощности на каждый отсчет времени усреднения. Ограничение в направлении прихода потока в вертикальной плоскости задается указанием размера углового сектора разрешенных направлений. Операция суммирования потока с ограниченных угловых направлений, соответствующих местоположению объекта, производится для третьоктавных полос во всем диапазоне измерений. Для полученных таким образом проходных характеристик акустической мощности производится выделение максимального значения и построение спектра максимума, объявляемого результатом измерений.

Таким образом, в данном способе в отличие от прототипа ПМ измеряется акустическая мощность шумоизлучения объекта, а не уровень звукового давления, что позволяет значительно увеличить соотношение сигнал/шум в измеряемом сигнале.

Способ исследования первичных гидроакустических полей шумящего объекта, заключающийся в расположении гидроакустического приемного модуля в заданной области натурного водоема, направлении к приемному модулю исследуемого шумящего объекта и измерении приемным модулем параметров шумящего объекта при последующей обработке последних на компьютере, отличающийся тем, что в качестве приемного модуля используют комбинированный гидроакустический приемник с разнесенными в пространстве на расстояние, не превышающее 0,2λ в пределах приемного модуля векторным приемником и приемником звукового давления, а в качестве измеряемого приемным модулем параметра - акустическую мощность шумящего объекта, измеряемую в плоскости, ориентированной вдоль траектории движения объекта, где λ - минимально регистрируемая длина звуковой волны в спектре шумоизлучения шумящего объекта.



 

Похожие патенты:

Изобретение относится к технической акустике и может быть использовано для измерения мощности ультразвукового излучения. .

Изобретение относится к технологии и технике связи, например идентификации тональных сигналов для автоматического определения номера (АОН) телефона вызывающего абонента в коммутируемых каналах сетей передачи информации.

Изобретение относится к измерительной технике в области гидроакустики и может быть использовано для определения уровня звукового давления в полосе частот судна, проходящего над гидроакустической измерительной системой (ГИС).

Изобретение относится к области гидроакустики и может быть использовано для измерения характеристик шумоизлучения движущегося объекта в натурном водоеме. .

Изобретение относится к техническим средствам автоматизации систем управления и предназначено для контроля физических величин. .

Изобретение относится к теплофизическим приборам. .

Изобретение относится к гидроакустическим измерениям, а более конкретно к измерениям электрической и гидроакустических составляющих суммарной помехи работе гидроакустической станции (ГАС) на швартовных испытаниях судна (на стопе, при работающих машинах и механизмах).

Изобретение относится к техническим средствам определения дальности действия гидроакустических средств. .
Изобретение относится к области получения и использования акустических колебаний. .

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерения вибрации. .
Изобретение относится к ультразвуковой технике и предназначено для качественной оценки распределения плотностей ультразвуковой энергии в ультразвуковых ваннах и других технологических объемах с водой, повергаемой действию ультразвука

Изобретение относится к измерительной технике и может быть использовано для измерения и регистрации механических колебаний различных объектов, оборудования и сооружений, например на атомных электростанциях, а также на объектах с вредными условиями труда
Изобретение относится к передатчикам параметра процесса, преимущественно, чтобы управлять или наблюдать за производственными процессами

Изобретение относится к области гидроакустики и может быть использовано для регистрации инфранизкочастотных колебаний в морской воде

Изобретение относится к гидроакустике и предназначено для использования в активно-пассивных и параметрических системах контроля протяженных морских акваторий, измерения характеристик гидрофизических полей, формируемых естественными и искусственными источниками, инженерными сооружениями, а также стихийными морскими явлениями, например, внутренними волнами, землетрясениями или цунами

Изобретение относится к гидроакустике и может быть использовано в просветных приемоизлучающих системах контроля протяженных морских акваторий и комплексного мониторинга гидрофизических полей среды различной физической природы

Изобретение относится к гидроакустике и может быть использовано в просветных приемоизлучающих системах контроля протяженных морских акваторий и комплексного мониторинга гидрофизических полей среды различной физической природы

Изобретение относится к способу и устройству для определения параметров газожидкостного потока в трубопроводе и может быть использовано в нефтедобывающей и других отраслях промышленности, где требуется высокая точность определения параметров

Изобретения относятся к экспериментальной аэродинамике и могут быть использованы для исследования состояния потока вблизи тела, на которое может набегать поток. Датчик состояния потока содержит, по меньшей мере, одно устройство для детектирования частот, предназначенное для обнаружения, по меньшей мере, одной заранее заданной характеристической частоты состояния потока. При этом устройство для детектирования частот содержит, по меньшей мере, один осциллирующий элемент, который возбуждается потоком до резонансного колебательного движения, и имеет резонансную частоту или частоту собственных колебаний, адаптированную к указанной заранее заданной характеристической частоте, в частности, соответствующую указанной заранее заданной характеристической частоте. Кроме того, предлагается применение датчика состояния потока в устройстве для измерения потока и в способе измерения потока, а также предпочтительный способ изготовления датчика состояния потока. Технический результат заключается в упрощении конструкции и простоте эксплуатации. 5 н. и 20 з.п. ф-лы, 6 ил.

Настоящая группа изобретений относится к измерительной камере (6) для ультразвуковой ванны (1) или для емкости, которая оборудована низкочастотным источником (2) ультразвука для выработки кавитации и способу для определения кавитационной энергии. Измерительная камера подходит для определения кавитационной энергии за счет увеличения объема измерительной жидкости (10), содержащейся в измерительной камере. Измерительная камера имеет емкость (7) со звукопроницаемой оконной областью (8) и датчиком (9) для измерения увеличения объема измерительной жидкости (10). С помощью предложенной измерительной камеры и соответствующего ей способа (независимо от предусмотренной ультразвуковой ванны) возможно надежно определить введенную мощность ультразвука или заключить о мощности очистки. 2 н. и 7 з.п. ф-лы, 4 ил.
Наверх