Способ получения эфиров бис- , -ненасыщенных дикарбоновых кислот

Изобретение относится к органическому синтезу и касается усовершенствованного способа получения эфиров бис-α,β-ненасыщенных дикарбоновых кислот, заключающийся в том, что диалкилмалеаты подвергают взаимодействию с циклическими олефинами в присутствии катализатора метатезиса при температуре от 20°С до 90°С. Изобретение позволяет получать эфиры бис-α,β-ненасыщенных дикарбоновых кислот без применения акрилатов, легко полимеризующихся при хранении, и исключить из процесса растворитель. 7 з.п. ф-лы, 4 табл.

 

Область техники, к которой относится изобретение

Изобретение относится к органическому синтезу и касается способа получения эфиров бис-α,β-ненасыщенных дикарбоновых кислот по реакции кросс-метатезиса малеатов с циклическими олефинами.

Уровень техники

Известен способ получения эфиров бис-α,β-ненасыщенных дикарбоновых кислот по реакции кросс-метатезиса эфиров акриловой кислоты с циклическими олефинами (Randl S., Connon S.J., Blechert S. Chem. Commun., 2001, 1796-1797).

Реакция проводится в кипящем дихлорометане в присутствии 5 мол.% катализаторов Граббса (1) или Ховейды (2) второго поколения. При этом мольное соотношение циклический олефин : акрилат составляет 3:1. Наилучшие результаты получаются с применением комплекса (2).

Время реакции обычно составляет не менее 6 часов. Для снижения выхода побочных продуктов используют высокое разбавление реагентов (концентрация акрилатов составляет 0.2 М). Согласно данным 1Н ЯМР, эфиры бис-α,β-ненасыщенных дикарбоновых кислот образуются в этой реакции с выходами от 83 до 90% (для n=1 или 3). При n=2 выходы снижаются до 54-66%.

Недостатками этого способа являются использование большого количества дорогостоящего катализатора, необходимость проведения реакции при большом разбавлении, что приводит к тому, что в реакции используется очень большое количество растворителя, в результате чего возрастают затраты на его регенерацию. Также к недостаткам можно отнести использование в качестве одного из реагентов легко полимеризующихся акрилатов.

Раскрытие изобретения

Задача, решаемая данным изобретением, состоит в разработке способа синтеза эфиров бис-α,β-ненасыщенных дикарбоновых кислот исходя из низкотоксичного, дешевого и удобного в хранении сырья.

Технический результат состоит в осуществлении способа получения эфиров бис-α,β-ненасыщенных дикарбоновых кислот без применения акрилатов, легко полимеризующихся при хранении, и исключении из процесса растворителя.

Технический результат достигается тем, что диалкилмалеаты подвергают взаимодействию с циклическими олефинами в присутствии катализатора метатезиса при температуре от 20°С до 90°С.

Диалкилмалеаты могут содержать спиртовые заместители с числом атомов углерода от 1 до 10.

Циклические олефины могут содержать от 5 до 20 атомов углерода.

Циклические олефины могут содержать более одной ненасыщенной связи.

Соотношение диалкилмалеат : олефин может составлять от 1:1 до 6:1. Оптимальное мольное соотношение диалкилмалеат : циклоолефин составляет 2:1. Реакцию ведут до полной конверсии циклического олефина и его олигомеров, образующихся на первых этапах процесса.

Предпочтительно взаимодействие диалкилмалеатов с циклическими олефинами осуществляется при температуре от 40°С до 50°С.

В качестве катализатора метатезиса применяют карбеновые комплексы рутения, содержащие имидазольные лиганды, такие как катализатор Граббса второго поколения (1) или катализатор Ховейды второго поколения (2). Наилучшие результаты достигаются при использовании катализатора Ховейды второго поколения.

Для получения высокого выхода эфиров бис-α,β-ненасыщенных дикарбоновых кислот циклический олефин вводят в реакционную смесь постепенно небольшими порциями. Способ прибавления циклического олефина оказывает существенное влияние на выходы эфиров бис-α,β-ненасыщенных дикарбоновых кислот. Медленное прибавление олефина способствует их увеличению.

Введение в реакционную смесь циклического олефина может осуществляться в виде раствора в исходном диалкилмалеате. Таким образом удается решить проблему образования значительных количеств эфиров фумаровой кислоты, которые далее не участвуют в реакции метатезиса. Снижения скорости образования фумаратов удается достигнуть проведением реакции в отсутствии растворителя.

Для достижения максимального выхода эфиров бис-α,β-ненасыщенных дикарбоновых кислот используемые реагенты должны быть максимальной чистоты, поскольку примеси в них оказывают существенное влияние на время жизни катализатора метатезиса, поэтому реагенты предварительно подвергают очистке, которую производят непосредственно перед взаимодействием, или после очистки до взаимодействия реагенты хранят в инертной атмосфере.

Выходы целевых продуктов, а также условия проведения реакции в значительной степени зависят от используемого циклического олефина и диалкилмалеата, а также условия проведения реакции: температура, соотношение диалкилмалеат : циклоолефин, количество катализатора.

Осуществление изобретения

Метатезис диалкилмалеатов с циклическими алкенами осуществляли по реакции, уравнение которой представлено ниже. Продуктами этой реакции являются эфиры бис-α,β-ненасыщенных дикарбоновых кислот, которые образуются с селективностью, близкой к количественной.

Для осуществления заявленного способа диалкилмалеаты подвергают взаимодействию с циклическими олефинами в соотношении диалкилмалеат : олефин от 1:1 до 6:1 в присутствии катализатора метатезиса при температуре от 20°С до 90°С.

Оптимальные температуры проведения реакции - 40-50°С. При более низких температурах скорость взаимодействия мала, а при повышении температуры значительно возрастает скорость разложения катализатора.

Оптимальное соотношение диалкилмалеат : циклоолефин в большинстве случаев составляет 2:1. Когда растворимость исходного циклоолефина или промежуточных соединений в реакционной смеси мала, более предпочтительно использовать большее соотношение диалкилмалеат : циклоолефин (до 6:1).

Наилучшие выходы продуктов достигаются при применении комплекса (2), что было показано на примере реакции диэтилмалеата с циклооктеном. Целевым продуктом их взаимодействия (в условиях избытка диэтилмалеата) является диэтилдодека-2,10-диендиоат (3). Содержание этого вещества в реакционной смеси после реакции диэтилмалеата с циклооктеном, катализируемой 0.1 мол.% катализатора Граббса второго поколения (1), составило, судя по данным ГЖХ, около 10%, в то время как в аналогичных условиях, но в присутствии катализатора Ховейды второго поколения (2), оно возросло до 40.5% (таблица 1, примеры 3 и 4).

Таблица 1
Взаимодействие диэтилмалеата с циклооктеном (условия реакции: 50°С, без растворителя, соотношение малеат : циклооктен = 2:1, время 19 часов).
ПримерКатализатор (мол.%)Состав реакционной смеси по данным ГЖХ, %
МалеатФумарат34
12 (0.1)24.12.973.0-
22 (0.05)42.61.447.28.8
32 (0.1)54.71.740.53.1
41 (0.1)80.39.210.00.5
Примечание: в примерах 1 и 2 циклооктен вводят в реакционную смесь в течение 40 минут, а в примерах 3 и 4 весь циклооктен введен в реакционную смесь сразу.

Минимальное количество катализатора, необходимое для полной конверсии циклического углеводорода в целевой продукт, составляет 0.1 мол.%. Дальнейшее его снижение приводит к тому, что в реакционной смеси остаются не прореагировавшими олигомерные продукты, такие как (4) содержащие соединения, образованные из двух и более молекул циклического олефина на промежуточных стадиях процесса.

Способ прибавления циклического олефина оказывает существенное влияние на выходы эфиров бис-α,β-ненасыщенных дикарбоновых кислот. Медленное прибавление олефина способствует их увеличению. Лучше, если олефин будет медленно прибавляться в виде раствора в исходном малеате. Так, содержание диэтилдодека-2,10-диендиоата (3) в реакционной смеси после взаимодействия диэтилмалеата с циклооктеном при соотношении малеат : алкен = 2:1 в присутствии 0.1 мол.% катализатора Ховейды второго поколения (2) в реакции, где циклооктен был введен в реактор постепенно (в течение 40 минут) составило 73% (таблица 1, пример 1). Когда же реакцию повторили в аналогичных условиях, но весь всего циклооктен прибавили сразу за одну порцию, содержание продукта реакции снизилось до 40.5% (таблица 1, пример 3). Кроме того, в последнем случае в смеси сохранилось небольшое количество непрореагировавшего с малеатом соединения (4).

Очистка реагентов может включать фильтрование сквозь окись алюминия с последующим высушиванием над молекулярными ситами А4 (для малеатов) или перегонкой над натрием (для циклических олефинов). Лучше использовать свежеперегнанные циклоолефины или хранить их в инертной атмосфере.

Влияние чистоты циклоолефинов на выход эфиров бис-α,β-ненасыщенных дикарбоновых кислот было изучено на примере реакции диэтилмалеата с циклоокта-1,5-диеном (50°С, соотношение малеат : олефин = 4:1, 0.2 мол.% катализатора Ховейды второго поколения).

Когда циклоокта-1,5-диен был очищен перегонкой над натрием непосредственно перед экспериментом, содержание диэтилокта-2,6-диендиоата (5) (основного продукта реакции циклоокта-1,5-диена с диэтилмалеатом) в реакционной смеси составило около 60% (таблица 2, пример 3). Когда же в реакции использовали циклоокта-1,5-диен, перегнанный приблизительно за 30 часов до эксперимента, содержание эфира (5) снизилось до 28%, при этом в смеси было обнаружено около 20% (в сумме) более высокомолекулярных промежуточных продуктов (6), (7) и (8) (таблица 2, пример 2).

Таблица 2
Взаимодействие диэтилмалеата с циклоокта-1,5-диеном (условия реакции: 50°С, без растворителя, соотношение малеат : циклоокта-1,5-диен = 4:1,19 часов).
ПримерКатализатор (мол.%)Состав реакционной смеси по данным ГЖХ, %
МалеатФумарат5678
10.174.92.26.89.15.61.4
20.250.52.027.615.83.80.3
3а0.234.55.659.9---
Примечание: циклоокта-1,5-диен вводят в реакционную смесь в течение 30 минут, в качестве катализатора использовался катализатор Ховейды второго поколения; а) использовался циклоокта-1,5-диен, перегнанный над натрием непосредственно перед экспериментом, выход продукта (5) после очистки от избытка малеата составил 96%.

Выходы целевых продуктов, а также условия проведения реакции: температура, соотношение диалкилмалеат : циклоолефин, количество катализатора, в значительной степени зависят от используемого циклического углеводорода. Наилучшие результаты были получены в реакции диэтилмалеата с циклооктеном. В присутствии 0.1 мол.% катализатора Ховейды второго поколения диэтилдодека-2,10-диендиоат (3) в этой реакции был получен с препаративным выходом 96% (таблица 1, пример 1). Реакцию вели при 50°С и соотношении диалкилмалеат : циклооктен = 2:1. Уменьшение количества катализатора до 0.05 мол.% приводит к снижению выхода продукта (3) до 60% (таблица 1, пример 2). При этом в качестве побочного продукта образуется диэфир (4), содержащий в своей структуре фрагменты из двух молекул циклооктена.

Аналогичные условия проведения реакции требуются для реакции диэтилмалеата с циклоокта-1,5-диеном, за исключением того, что поскольку в этом циклическом углеводороде содержатся две двойные связи, то соотношение диалкилмалеат : олефин необходимо увеличить до 4:1, а количество катализатора до 0.2 мол.%. Диэтилокта-2,6-диендиоат (5) в этих условиях был получен с выходом 96% (таблица 2, пример 3). При меньших количествах катализатора реакция не проходит до конца (таблица 2, примеры 1 и 2).

Реакцию метатезиса диэтилмалеата с циклопентеном необходимо проводить в более мягких условиях (при 40°С), поскольку температура кипения циклопентена 44-46°С. В противном случае возрастает унос циклического олефина из реакционной смеси током аргона несмотря на высокоэффективный обратный холодильник.

Необходимо отметить, что взаимодействие диэтилмалеата с циклопентеном протекает существенно хуже, чем с циклооктеном или циклоокта-1,5-диеном, что может быть связано с более низкой активностью циклопентена в реакциях метатезисной полимеризации(перваястадияпроцессавзаимодействиядалкилмалеатовс циклическими алкенами). Даже в присутствие 0.5 мол.% катализатора Ховейды второго поколения реакционная смесь через 19 часов все еще содержит небольшое количество циклического олефина (таблица 3, пример 1), а количественной селективности по диэфиру (9) не удается достигнуть даже с применением 0.8 мол.% комплекса (2) (таблица 3, пример 2).

Таблица 3
Взаимодействие диэтилмалеата с циклопентеном (условия реакции: 40°С, без растворителя, соотношение малеат : циклопетен = 2:1, 19 часов).
ПримерКатализатор (мол.%)Состав реакционной смеси по данным ГЖХ, %
ЦиклопентенМалеатФумарат910
10.50.658.02.031.08.4
20.8-48.12.238.611.1
Примечание: циклопентен вводят в реакционную смесь в течение 30 минут, в качестве катализатора использовался катализатор Ховейды второго поколения.

Также плохо протекает взаимодействие диэтилмалеата с циклододеценом. Однако в этом случае это связано с очень низкой растворимостью олигомера (или олигомера), образующегося из циклододецена. Увеличение соотношения диалкилмалеат : циклододецен до 4:1 позволяет повысить выход эфира (11), но в незначительной степени (таблица 4, примеры 1 и 2). При этом увеличение количества катализатора не оказывает существенного изменения выхода продукта (таблица 4, примеры 2 и 3).

Таблица 4
Взаимодействие диэтилмалеата с циклододеценом (условия реакции: 50°С, без растворителя, 19 часов).
ПримерКатализатор (мол.%)Соотношение малеат: олефинСостав реакционной смеси по данным ГЖХ, %
МалеатФумарат11
10.12:158.53.438.1
20.14:178.52.419.1
30.24:175.62.222.2
Примечание: циклододецен вводят в реакционную смесь в течение 30 минут, в качестве катализатора использовался катализатор Ховейды второго поколения.

Реакция метатезиса циклододецена с дибутилмалеатом оказалась более эффективна и при соотношении дибутилмалеат : циклододецен = 2:1 в присутствии 0.2 мол.% катализатора Ховейды второго поколения эфир (12) был получен после очистки с выходом 74%. Кроме того, из реакционной смеси был также выделен олигомер циклододецена, выход которого составил около 16%.

Изобретение иллюстрируется следующими примерами.

Пример 1

Реакцию диэтилмалеата с циклооктеном проводят по стандартным методикам в условиях, исключающих попадание влаги и воздуха в реакционную систему используя реакторы Шленка, подсоединенные к вакуумной и аргоновой линиям. Коммерческие диэтилмалеат (97%, фирмы "Aldrich") и циклооктен (97%, фирмы "Acros") очищают фильтрованием через основной оксид алюминия (фирмы,"Acros", 50-200 микрон, 20 г на 100 мл вещества). Диэтилмалеат далее перегоняют в вакууме и высушивают над молекулярными ситами. Циклооктен после фильтрования перегоняют при атмосферном давлении над натрием.

В колбу Шленка на 25 мл, снабженную магнитной мешалкой и закрытую септой, помещают 5.854 г (34 ммоль) диэтилмалеата, замораживают жидким азотом, вакуумируют до 0.1 Па и вакуумный кран перегревают, после чего смеси дают нагреться до комнатной температуры. Операцию дегазации повторяют три раза. Вакуум перекрывают, реакционной смеси дают нагреться до комнатной температуры и в реакционную колбу вводят аргон, после чего смесь нагревают до 50°С. Далее в реакционную смесь вводят суспензию 12.53 мг (0.02 ммоль, 0.1 мол.%) катализатора Ховейды второго поколения в 1.033 г (6 ммоль) диэтилмалеата. К полученному раствору в течение 40 минут прибавляют 2.204 г (20 ммоль) циклооктена, при этом наблюдается выпадение небольшого количества осадка. Через 19 часов реакционную смесь разделяют методом препаративной хроматографии на силикагеле, используя смесь гексан-этилацетат с постепенным повышением полярности. Получают 5.422 г (19.2 ммоль, 96%) диэтилдодека-2,10-диендиоата в виде бесцветной жидкости с т. кип. 124-128°С/0.5 мм рт.ст. Результаты хроматографического анализа представлены в таблице 1, пример 1.

Пример 2

Реакцию диэтилмалеата с циклооктеном проводят по примеру 1, но используя 6.27 мг (0.01 ммоль, 0.05 мол.%) катализатора Ховейды второго поколения. Получают 3.389 г (12 ммоль, 60%) диэтилдодека-2,10-диендиоата. Результаты хроматографического анализа представлены в таблице 1, пример 2.

Пример 3

Реакцию диэтилмалеата с циклооктеном проводят по примеру 1, но весь циклооктен помещают в реакционную смесь до дегазирования. Реакцию ведут 24 часа. Результаты хроматографического анализа представлены в таблице 1, пример 3.

Пример 4

Реакцию диэтилмалеата с циклооктеном проводят по примеру 3, но используя 16.98 мг (0.02 ммоль, 0.1 мол.%) катализатора Граббса второго поколения. Результаты хроматографического анализа представлены в таблице 1, пример 4.

Пример 5

Реакцию диэтилмалеата с циклоокта-1,5-диеном проводят в условиях, как в примере 1. Циклоокта-1,5-диен (97%, фирмы "Acros") очищают фильтрованием через основной оксид алюминия (фирмы,"Acros", 50-200 микрон, 20 г на 100 мл вещества) и перегоняют при атмосферном давлении над натрием.

В колбу Шленка на 25 мл, снабженную магнитной мешалкой и закрытую септой, помещают 11.020 г (64 ммоль) диэтилмалеата, замораживают жидким азотом, вакуумируют до 0.1 Па и вакуумный кран перегревают, после чего смеси дают нагреться до комнатной температуры. Операцию дегазации повторяют три раза. Вакуум перекрывают, реакционной смеси дают нагреться до комнатной температуры и в реакционную колбу вводят аргон, после чего смесь нагревают до 50°С. Далее в реакционную смесь вводят суспензию 12.53 мг (0.02 ммоль, 0.1 мол.%) катализатора Ховейды второго поколения в 1.033 г (6 ммоль) диэтилмалеата. К полученному раствору в течение 30 минут прибавляют смесь 1.702 г (10 ммоль) диэтилмалеата и 2.167 г (20 ммоль) циклоокта-1,5-диена. Через 19 часов реакционную смесь анализируют методом хроматомасс-спектрометрии. Результаты эксперимента представлены в таблице 2, пример 1.

Пример 6

Реакцию диэтилмалеата с циклоокта-1,5-диеном проводят по примеру 5, но используя 25.06 мг (0.04 ммоль, 0.2 мол.%) катализатора Ховейды второго поколения. Результаты хроматографического анализа представлены в таблице 2, пример 2.

Пример 7

Реакцию диэтилмалеата с циклоокта-1,5-диеном проводят по примеру 6, но циклоокта-1,5-диен перегоняют над натрием непосредственно перед введением в реакцию. Результаты хроматографического анализа представлены в таблице 2, пример 3. Перегонкой в вакууме из реакционной смеси выделяют 8.690 г (38.4 ммоль, 96%) диэтилокта-2,6-диендиоата в виде бесцветной жидкости с т. кип. 98-102°С/1 мм рт.ст.

Пример 8

Реакцию диэтилмалеата с циклопентеном проводят в условиях, как в примере 1. Циклопентен (97%, фирмы "Acros") очищают фильтрованием через основной оксид алюминия (фирмы, "Acros", 50-200 микрон, 20 г на 100 мл вещества) и перегоняют при атмосферном давлении над натрием.

В колбу Шленка на 25 мл, снабженную магнитной мешалкой, обратным холодильником и выводом потока аргона, помещают 2.443 г (14.2 ммоль) диэтилмалеата и 31.33 мг (0.05 ммоль, 0.5 мол.%) катализатора Ховейды второго поколения. Смесь замораживают жидким азотом, вакуумируют до 0.1 Па и вакуумный кран перегревают, после чего смеси дают нагреться до комнатной температуры. Операцию дегазации повторяют три раза. Вакуум перекрывают, смеси дают нагреться до комнатной температуры и в реакционную колбу вводят аргон, после чего смесь нагревают до 40°С. К нагретому раствору в течение 30 минут прибавляют смесь 1.000 г (5.8 ммоль) диэтилмалеата и 680 мг (10 ммоль) циклопентена. Через 19 часов отбирают пробу для анализа методом хроматомасс-спектрометрии (результаты анализа представлены в таблице 3, пример 1) и в противотоке аргона прибавляют еще 18.80 мг (0.03 ммоль, 0.3 мол.%) катализатора Ховейды второго поколения. Реакционную смесь перемешивают при 40°С еще 19 часов и анализируют методом хроматомасс-спектрометрии. Результаты эксперимента представлены в таблице 3, пример 2.

Пример 9

Реакцию диэтилмалеата с циклододеценом проводят в условиях, как в примере 1. Циклододецен (97%, фирмы "Acros") очищают фильтрованием через основной оксид алюминия (фирмы, "Acros", 50-200 микрон, 20 г на 100 мл вещества) и перегоняют над натрием в вакууме.

В колбу Шленка на 25 мл, снабженную магнитной мешалкой и закрытую септой, помещают 4.305 г (25 ммоль) диэтилмалеата, замораживают жидким азотом, вакуумируют до 0.1 Па и вакуумный кран перегревают, после чего смеси дают нагреться до комнатной температуры. Операцию дегазации повторяют три раза. Вакуум перекрывают, реакционной смеси дают нагреться до комнатной температуры и в реакционную колбу вводят аргон, после чего смесь нагревают до 50°С. Далее в реакционную смесь вводят суспензию 12.53 мг (0.02 ммоль, 0.1 мол.%) катализатора Ховейды второго поколения в 1.033 г (6 ммоль) диэтилмалеата. К полученному раствору при интенсивном перемешивании в течение 30 минут прибавляют смесь 3.322 г (20 ммоль) циклододецена и 1.550 г (9 ммоль) диэтилмалеата, при этом наблюдается обильное выпадение осадка, и смесь становится очень вязкая. Через 19 часов реакционную смесь анализируют с помощью хроматомасс-спетрометрии. Результаты эксперимента приведены в таблице 4, пример 1.

Пример 10

Реакцию диэтилмалеата с циклододеценом проводят по примеру 9, но в колбу помещают 11.192 г (65 ммоль) диэтилмалеата. Результаты хроматографического анализа представлены в таблице 4, пример 2. По окончании реакции смесь разбавляют дихлорометаном, осадок полимера отфильтровывают и сушат в вакууме. Получают 2.63 г твердого белого вещества. Выход полимера около 79%.

Пример 11

Реакцию диэтилмалеата с циклододеценом проводят по примеру 10, но используя 25.07 мг (0.04 ммоль, 0.2 мол.%) катализатора Ховейды второго поколения. Результаты хроматографического анализа представлены в таблице 4, пример 3. Выход полимера 2.18 г (около 66%).

Пример 12

Реакцию дибутилэтилмалеата с циклододеценом проводят в условиях, как в примере 9. Дибутилмалеат (98%, фирмы "Acros") очищают фильтрованием через основной оксид алюминия (фирмы "Acros", 50-200 микрон, 20 г на 100 мл вещества) и перегоняют в вакууме.

В колбу Шленка на 25 мл, снабженную магнитной мешалкой и закрытую септой, помещают 3.539 г (15.5 ммоль) дибутилмалеата и 12.53 мг (0.02 ммоль, 0.2 мол.%) катализатора Ховейды второго поколения, замораживают жидким азотом, вакуумируют до 0.1 Па и вакуумный кран перегревают, после чего смеси дают нагреться до комнатной температуры. Операцию дегазации повторяют три раза. Вакуум перекрывают, реакционной смеси дают нагреться до комнатной температуры и в реакционную колбу вводят аргон, после чего смесь нагревают до 50°С. Далее к реакционной смеси при интенсивном перемешивании в течение 30 минут прибавляют смесь 1.664 г (10 ммоль) циклододецена и 1,027 г (4.5 ммоль) дибутилмалеата. При этом наблюдается выпадение большого количества осадка. По окончании прибавления цвет реакционной смеси зеленый. Реакцию ведут в течение 19 часов при 50°С, после чего охлаждают и анализируют методом хроматомасс-спетрометрии. Смесь содержит около 45.1% дибутилмалеата и 54.9% дибутилгексадека-2,14-диендиоата.

Смесь разбавляют дихлорометаном, осадок отфильтровывают и сушат в вакууме. Получают 270 мг белого порошка полимера. Выход около 16%.

Маточный раствор упаривают в вакууме и фильтруют сквозь небольшое количество силикагеля, элюируя смесь гексан : этилацетат = 10:1. Из полученного продукта отгоняют в вакууме дибутилмалеат (около 2.09 г), кубовый остаток очищают с помощью препаративной хроматографии на силикагеле, элюируя смесь гексан : этилацетат с постепенным увеличением полярности. Получают 2.920 г (7.4 ммоль, 74%) дибутилгексадека-2,14-диендиоата в виде бесцветного масла.

12.53 мг (0.02 ммоль, 0.1 мол.%) катализатора Ховейды второго поколения в 1.033 г (6 ммоль) диэтилмалеата. К полученному раствору при интенсивном перемешивании в течение 30 минут прибавляют смесь 3.322 г (20 ммоль) циклододецена и 1.550 г (9 ммоль) диэтилмалеата, при этом наблюдается обильное выпадение осадка, и смесь становится очень вязкая. Через 19 часов реакционную смесь анализируют с помощью хроматомасс-спетрометрии. Результаты эксперимента приведены в таблице 4, пример 1.

Пример 13

Реакцию диэтилмалеата с циклогексеном проводят в условиях, как в примере 1. Циклогексен (97%, фирмы "Acros") очищают фильтрованием через основной оксид алюминия (фирмы, "Acros", 50-200 микрон, 20 г на 100 мл вещества) и перегоняют при атмосферном давлении над натрием.

В колбу Шленка на 25 мл, снабженную магнитной мешалкой и закрытую септой, помещают 5.854 г (34 ммоль) диэтилмалеата и 1.645 г (20 ммоль) циклогексена, замораживают жидким азотом, вакуумируют до 0.1 Па и вакуумный кран перегревают, после чего смеси дают нагреться до комнатной температуры. Операцию дегазации повторяют три раза. Вакуум перекрывают, реакционной смеси дают нагреться до комнатной температуры и в реакционную колбу вводят аргон, после чего смесь нагревают до 50°С. Далее в реакционную смесь вводят суспензию 12.53 мг (0.02 ммоль, 0.1 мол.%) катализатора Ховейды второго поколения в 1.033 г (6 ммоль) диэтилмалеата. Содержимое колбы перемешивают при 50°С 20 часов, при этом зеленая окраска смеси сохраняется. Согласно данным хроматомасс-спектрометрии смесь содержит 85.8% диэтилмалеата и 14.2% диэтилдека-2,8-диендиоата. Непрореагировавший диэтилмалеат отгоняют в вакууме, продукт выделяют с помощью препаративной хроматографии на силикагеле, элюируя смесь гексан-этилацетат = 10:1. Получают 760 мг (3 ммоль, 15%) диэтилдека-2,8-диендиоата в виде бесцветной жидкости.

Промышленная применимость

Производство эфиров бис-α,β-ненасыщенных дикарбоновых кислот по реакции метатезиса представляет интерес для промышленности благодаря низкой себестоимостью и доступности исходных соединений, а также мягкости условий и высокой селективности реакции. Селективность получения эфиров бис-α,β-ненасыщенных дикарбоновых кислот по заявленному способу близка к 100%. Заявленный в изобретении метод позволяет получать эфиры бис-α,β-ненасыщенных дикарбоновых кислот исходя из диалкилмалеатов и циклических олефинов. Преимуществом этого метода перед известными ранее является исключение из процесса легко полимеризующихся акрилатов и токсичных органических растворителей. Еще одним преимуществом этого метода является использование меньшего количества дорогостоящего катализатора метатезиса олефинов по сравнению с ранее известными методами.

1. Способ получения эфиров бис-α,β-ненасыщенных дикарбоновых кислот, заключающийся в том, что диалкилмалеаты подвергают взаимодействию с циклическими олефинами в присутствии катализатора метатезиса при температуре от 20 до 90°С.

2. Способ по п.1, отличающийся тем, что циклический олефин содержит более одной ненасыщенной связи.

3. Способ по п.1, отличающийся тем, что соотношение диалкилмалеат:олефин составляет от 1:1 до 6:1.

4. Способ по п.1, отличающийся тем, что взаимодействие производят при температуре от 40 до 50°С.

5. Способ по п.1, отличающийся тем, что в качестве катализатора метатезиса используют катализатор Ховейды второго поколения.

6. Способ по п.1, отличающийся тем, что циклический олефин вводят в реакционную смесь постепенно.

7. Способ по п.1, отличающийся тем, что используют циклический олефин в виде раствора в исходном диалкилмалеате.

8. Способ по п.1, отличающийся тем, что реагенты предварительно подвергают очистке, которую производят непосредственно перед взаимодействием, или после очистки до взаимодействия реагенты хранят в инертной атмосфере.



 

Похожие патенты:

Изобретение относится к способам получения метилового эфира 9Z11Е-октадекадиеновой кислоты (1) - потенциального тестирующего и диагностического агента аллергических и воспалительных состояний, что обусловлено наличием в его структуре системы сопряженных двойных связей, идентичной образующейся при действии ферментов липоксигеназ на природные полиненасыщенные кислоты.

Изобретение относится к органическому синтезу и касается области производства гомогенного катализатора для получения эфиров акриловой кислоты по реакции метатезиса малеатов с этиленом.

Изобретение относится к новому способу получения некоторых эфиров циклопропилкарбоновой кислоты и других производных циклопропилкарбоновой кислоты общей формулы I Изобретение также относится к новому способу получения диметилсульфоксония метилида и диметилсульфония метилида, применению некоторых эфиров циклопропилкарбоновой кислоты в способе получения промежуточных соединений, которые можно использовать в синтезе фармацевтически активных соединений, и некоторым промежуточным соединениям, получаемым данными способами.
Изобретение относится к усовершенствованному способу получения метилового эфира -(4-гидрокси-3,5-ди-трет-бутилфенил)пропионовой кислоты, являющегося промежуточным продуктом в синтезе высокоэффективных термо- и светостабилизаторов.

Изобретение относится к усовершенствованному способу получения метилового эфира -(4-гидрокси-3,5-ди-трет-бутилфенил)-пропионовой кислоты, являющегося промежуточным продуктом в синтезе высокоэффективных термо- и светостабилизаторов.
Изобретение относится к усовершенствованному способу получения метилового эфира 3-(4-гидрокси-3,5-ди-трет-бутилфенил)пропионовой кислоты, используемого в производстве стабилизаторов полимерных материалов, в сельском хозяйстве в качестве кормовой добавки, а также в медицине в качестве компонента лекарственных препаратов.

Изобретение относится к способам получения эфиров арилзамещенной пропионовой кислоты с высоким выходом и в короткий промежуток времени. .

Изобретение относится к новому способу получения производного нафталина, обладающего высокой гилолипидемической активностью, В частности, изобретение относится к производным 2-(3-и) или 4-низший алкоксифенил-2,3-бис(низший алкоксикарбонил)-4- оксинафталина и.их солям.

Изобретение относится к сырьевой композиции, к способу олефинового метатезиса, к способу получения сложного полиэфирполиэпоксида и к способу получения , -оксикислоты, сложного , -оксиэфира и/или , -диола с укороченной цепью

Изобретение относится к способу получения высокофторированных карбоновых кислот и их солей, а также их веществ-предшественников, включающему воздействие на высокофторированный олефин, имеющий общую формулу (I): производной муравьиной кислоты в соответствии с общей формулой (II): в присутствии радикального инициатора для образования вещества-предшественника карбоновой кислоты в виде О-эфиров, S-эфиров либо амидного аддукта общей формулы (III): и, необязательно, в случае получения кислоты, гидролиз аддукта формулы (III) для того, чтобы образовать карбоновую кислоту или ее соли с общей формулой (IV):, где в формулах (II) и (III) R представляет собой остаток O-M+, S-M+, OR′ или SR′ или NR′R″, где R′ и R″ являются независимыми друг от друга линейными или разветвленными либо циклическими алифатическими остатками, которые содержат по крайней мере один атом углерода и которые не имеют альфа-Н-атом, где альфа-Н-атом представляет собой атом водорода, который связан с атомом углерода, связанным с О, S или N в группах OR′, SR′ или NR′R″, и где в формулах (I), (III) и (IV) Rf представляет собой Н либо перфторированный или фторированный линейный или разветвленный алкильный остаток, который может содержать один или несколько катенарных атомов кислорода, и n составляет 1 или 0, m представляет собой число от 0 до 6, а М+ представляет собой катион. Способ позволяет получать целевые соединения с высоким выходом. 7 з.п. ф-лы, 7 пр.

Изобретение относится к способу получения β-функционализированных сложных эфиров карбоновых кислот, соответствующих формуле (I), где R означает алкильную группу с числом атомов углерода от одного до восьми, R′ означает атом водорода или алкильную структурную единицу с числом атомов углерода от одного до восьми и n означает ноль или целое число от 1 до 20, и X означает группу Ph-R″, где R″ означает атом водорода или алкильную группу с числом атомов углерода от одного до шести, или означает группу R″″-N-R′′′, где R′′′ и R″″ независимо друг от друга означают линейные или разветвленные или же циклические алкильные группы с числом атомов углерода от одного до восьми, где ненасыщенный сложный эфир, соответствующий общей формуле (II), где n, R и R′ имеют то же самое значение, что и в формуле (I), подвергают взаимодействию в одном реакторе с соединением бора формулы (III), где М означает анион, R″ принимает то же значение, что и в формуле (I), и Ar означает фенил, или с амином R″″-NH-R′′′ (IV), где R′′′ и R″″ имеют представленное выше значение, при этом реакцию проводят в растворителе в присутствии содержащего родий катализатора в бескислородной атмосфере при температурах от 80 до 120°C. Способ позволяет получать продукт в одном реакторе. 6 з.п. ф-лы, 19 пр., 3 табл.

Изобретение относится к области органического синтеза, а именно к способу получения норборнензамещенных циклопропановых производных фуллеренов и синтеза высокомолекулярных соединений на их основе. Предложен способ получения норборнензамещенных циклопропановых производных фуллеренов общей формулы (9), путем взаимодействия фуллерена С60 со сложным эфиром формулы 8, взятыми в мольном соотношении фуллерен C60:эфир = 1:1, в присутствии растворителя и основания при температуре 20-25°C в течение 0,5-1,0 часа. Изобретение также относится к способу получения полимеров путем полимеризации норборнензамещенных циклопропановых производных фуллеренов общей формулы (9) в присутствии катализатора Граббса I поколения общей формулы (10), взятого в мольном соотношении производное фуллерена:катализатор Граббса I = 35:1, в атмосфере аргона и в среде органического растворителя при температуре 20-25°C в течение 12 часов, добавления к реакционной смеси этилвинилового эфира для удаления остатков катализатора, высаживания полимера в метаноле. Способ позволяет получать норборнензамещенные циклопропановые производные фуллеренов, обладающих способностью к метатезисной полимеризации с образованием фуллеренсодержащих полимеров, с последующим формированием из них тонких пленок, служащих как акцепторные составляющие в фотовольтаических устройствах. 3 н.п. ф-лы, 3 илл., 2 пр.

Изобретение относится к способу получения диалкилнорборнен-2,3-дикарбокислатов и может быть использовано в производстве сложноэфирных пластификаторов поливинилхлорида и других полимеров. Способ получения диалкилнорборнен-2,3-дикарбоксилатов осуществляют взаимодействием диалкильных диэфиров фумаровой кислоты с циклопентадиеном (ЦПД), в качестве источника ЦПД используют С5 фракцию пиролиза в количестве, обеспечивающем мольное соотношение алкильного диэфира фумаровой кислоты и ЦПД, равное 1:1.5-3.0, при этом С5 фракцию дозируют в алкильный диэфир фумаровой кислоты при температуре реакционной массы 16-20°С, затем проводят реакцию при комнатной температуре до полного расходования диэфира фумаровой кислоты, после чего избыток фракции С5 отгоняют при температуре 30-60°С и атмосферном давлении, а кубовый остаток вакуумируют при давлении 2-10 мм рт.ст. и температуре в кубе 50-80°С. Целью изобретения является расширение сырьевых источников для получения недорогих пластификаторов алкилнорборнен-2,3-дикарбоксилатов, упрощение способа, снижение себестоимости. 1 з.п. ф-лы, 2 табл., 6 пр.

Изобретение относится к области органической химии, в частности к способу получения этил(2E,4E)-5-хлорпента-2,4-диеноата. Этил(2E,4E)-5-хлорпента-2,4-диеноат является перспективным исходным соединением в синтезе (2E,4E)-диеновых кислот и их производных. Результаты изобретения могут быть использованы в химии, тонком органическом синтезе и малотоннажной химической промышленности. Способ получения этил(2E,4E)-5-хлорпента-2,4-диеноата основан на олефинировании (2E)-3-хлорпроп-2-еналя, где образование продукта происходит в результате однореакторного окисления (2E)-3-хлорпроп-2-ен-1-ола манганатом бария (BaMnO4) до (2E)-3-хлорпроп-2-еналя с последующим олефинированием последнего (карбэтоксиметилен)трифенилфосфораном в дихлорметане при комнатной температуре в течение 20 ч. Задачей изобретения является создание более эффективного, простого и безопасного способа получения этил(2E,4E)-5-хлорпента-2,4-диеноата с более высоким выходом. Основными преимуществами способа являются более высокий выход продукта (63% в расчете на (2E)-3-хлорпроп-2-ен-1-ол), эффективность, безопасность и процедурная простота, связанные с отсутствием необходимости использования получаемого с низким выходом, неудобного и опасного в обращении чистого (2E)-3-хлорпроп-2-еналя. 1 пр.

Изобретение относится к органической химии, конкретно к получению спиро-гем-дихлорциклопропилмалонатов, на основе которых получают гем-дихлорциклопропанбарбитураты, традиционно применяемые в медицине как снотворные и успокаивающе средства. Способ получения спиро-гем-дихлорциклопропилмалонатов осуществляют дихлоркарбенированием диэтилмалонатов в присутствии триэтилбензиламмония хлористого при температуре 30°C в течение 5 часов. Технический результат - увеличение выхода целевого продукта при повышении его качества. 1 з.п. ф-лы, 1 табл., 2 пр.
Наверх