Способ проверки работоспособности газоанализаторов

Изобретение относится к области аналитического приборостроения и, в частности, к способам проверки работоспособности газоанализаторов. Способ проверки заключается в том, что источник паров анализируемого вещества помещают во внутренний объем сосуда, создавая в нем условия линейного возрастания концентрации паров вещества. Подключают к сосуду вход и выход проверяемого газоанализатора, снабженного побудителем расхода, измеряют промежуток времени между двумя различными показаниями газоанализатора и сравнивают измеренный промежуток времени с предварительно установленным эталонным промежутком времени, что позволяет устранить необходимость определения концентрации паров вещества в парогазовой смеси, пропускаемой через проверяемый газоанализатор, и, соответственно, упростить и удешевить процедуру проверки. 6 з.п. ф-лы, 2 ил.

 

Изобретение относится к области аналитического приборостроения и, в частности, к методам и средствам повышения надежности газоаналитической аппаратуры. Общеизвестны способы проверки работоспособности газоанализаторов с использованием поверочных газовых смесей известного состава, основанные на сравнении показаний проверяемого газоанализатора с действительным значением концентрации измеряемого компонента в поверочной газовой смеси.

Недостатком этих способов является то, что они требуют применения дорогостоящих поверочных газовых смесей известного состава. Поскольку проверку работоспособности необходимо производить регулярно, это значительно удорожает процедуру проверки.

Известен также способ проверки работоспособности газоанализатора, состоящий в создании в емкости паровоздушной смеси путем дозирования в замкнутый объем газа некоторого количества тестового вещества и последующем измерении его концентрации (см., например, Другов Ю.С., Родин А.А. Газохроматографический анализ газов, С.-Петербург, 2001, стр.24).

Недостатком известного способа является необходимость точного дозирования определенного количества тестового вещества в емкость. Ручное дозирование затруднительно, и при проверке даже небольшого числа газоанализаторов это создает значительные неудобства. Автоматизация дозирования существенно увеличивает стоимость проверки.

Задача изобретения состояла в разработке такого способа проверки работоспособности газоанализатора, который бы при своем осуществлении не требовал приготовления парогазовых смесей известного состава и был бы прост и доступен в практической реализации.

Указанная задача решается тем, что предложен способ проверки работоспособности газоанализатора с использованием источника паров тестового вещества, в котором согласно изобретению тестовое вещество помещают во внутренний объем сосуда, создавая условия линейного возрастания концентрации паров вещества во времени, подключают к сосуду вход и выход проверяемого газоанализатора, снабженного побудителем расхода, измеряют промежуток времени между двумя различными показаниями газоанализатора и сравнивают измеренный промежуток времени с предварительно определенным контрольным промежутком времени.

В предпочтительном варианте осуществления способа тестовое вещество помещают в диффузионную ячейку, причем вещество заполняет ее частично.

Другим отличием способа является то, что сосуд заполняют воздухом и в нем путем соединения внутреннего объема с атмосферой поддерживают давление равное атмосферному.

Еще одним отличием способа является то, что во внутреннем объеме сосуда производят циркуляцию воздуха.

В числе отличий способа следует отметить то, что во внутреннем объеме сосуда поддерживают постоянную температуру.

Другим отличием способа является то, что начальную концентрацию паров тестового вещества во внутреннем объеме сосуда в начале проверки работоспособности газоанализатора создают путем продувки внутреннего объема сосуда потоком очищенного от примесей атмосферного воздуха.

Еще одним отличием способа является то, что концентрацию паров тестового вещества во внутреннем объеме сосуда поддерживают меньшей концентрации насыщенного пара этого вещества.

Технический результат изобретения состоит в том, что проверка работоспособности газоанализатора сводится к измерению времени нарастания показаний газоанализатора.

При использовании предлагаемого способа проверки отпадает необходимость дозирования определенного количества тестового вещества в емкость, предварительно очищенную после предыдущей проверки, поскольку способ основан не на абсолютных показаниях газоанализатора, а на измерении промежутка времени, за который они нарастают.

Для определения контрольного промежутка времени, являющегося фактически паспортной величиной, можно использовать заведомо исправный газоанализатор (эталонный), отградуированный по поверочным газовым смесям. Контрольный промежуток времени при постоянстве условий проверки (тестовое вещество, задаваемые показания газоанализатора, температура) является величиной постоянной.

Сущность изобретения поясняется чертежами.

На фиг.1 изображена принципиальная схема одного из возможных вариантов выполнения устройства для осуществления предлагаемого способа.

На фиг.2 схематически приведены временные зависимости показаний эталонного газоанализатора и проверяемого газоанализатора с меньшей чувствительностью.

Устройство для осуществления предлагаемого способа (фиг.1) содержит сосуд 1, внутри которого помещена диффузионная ячейка 2, выполненная из прозрачного материала, (например из кварцевого стекла), частично заполненная тестовым веществом 3 (легколетучей жидкостью, например гексаном). Ячейка 2 имеет диффузионный натекатель 4 паров, выполненный в виде трубки с внутренним диаметром 2-10 мм. Сосуд 1 снабжен крышкой 5, на которой закреплен патрубок 6, соединенный с диффузионной ячейкой 2 и служащий для ее заполнения тестовым веществом. Внутри сосуда на штанге 8 установлен вентилятор 7, служащий для выравнивания концентрации паров тестового вещества в объеме сосуда 1. В крышке 5 имеется патрубок 9, служащий для сообщения внутреннего объема сосуда 1 с атмосферой. Крышка 5 снабжена также двумя патрубками 10 и 11, к которым подсоединены вход и выход газоанализатора 12, снабженного побудителем расхода (на фиг. не показан). В газоанализаторе установлен фотоионизационный детектор, не разрушающий тестовое вещество. Благодаря тому, что паровоздушная смесь, пройдя через газоанализатор 12, возвращается в сосуд 1, наличие газоанализатора не оказывает влияния на концентрацию паров тестового вещества в сосуде 1. В крышке 5 имеется также патрубок 13, к которому подсоединен выход компрессора 14, вход которого соединен с приспособлением 15 для очистки атмосферного воздуха (например адсорбером, заполненным гранулами активированного угля).

Перед первым использованием данного устройства для проверки работоспособности проводят его аттестацию, заключающуюся в определении контрольного промежутка времени, в течение которого показания газоанализатора возрастают от одного задаваемого значения до другого. С этой целью в качестве газоанализатора 12 используют заведомо исправный газоанализатор (эталонный), отградуированный по поверочным газовым смесям.

В начале аттестации включают газоанализатор 12 и с помощью компрессора 14 продувают внутренний объем сосуда 1 очищенным от примесей в приспособлении 15 атмосферным воздухом. При этом концентрация паров тестового вещества в сосуде 1, измеряемая эталонным газоанализатором 12, уменьшается (участок А кривой 1, фиг.2), и показания падают до некоторого значения S0. Значение S0 выбирают близким к точке равновесия между количеством тестового вещества, поступающего в сосуд 1 из диффузионной ячейки 2, и количеством тестового вещества, удаляемого из сосуда 1 через патрубок 9.

Когда показания эталонного газоанализатора 12 достигнут значения S0, в момент времени t0 отключают компрессор 14. Концентрация паров тестового вещества начинает возрастать во времени по линейному закону, поскольку давление пара тестового вещества в сосуде много меньше давления насыщенного пара (участок В кривой 1, фиг.2). Фиксируют момент времени (t1*), когда показания эталонного газоанализатора 12 достигнут значения, обозначенного на оси ординат S1. Когда показания эталонного газоанализатора 12 достигнут значения, обозначенного на оси ординат S2, фиксируют момент времени (t2*). Величина t*2-t*1 представляет собой контрольный промежуток времени. Величина контрольного промежутка времени является постоянной для данной температуры при заданных значениях S1 и S2.

Значения S2 и S1 задают таким образом, чтобы они находились в начале участка В и величина t*2-t*1 составляла не менее 30 с. При этом обеспечивается нарастание показаний, близкое к линейному, и низкая погрешность измерения величины t*2-t*1. Кроме того, величину S2 обычно выбирают выше значения, при котором срабатывает сигнализация проверяемого газоанализатора, что позволяет проверить также работоспособность сигнализирующего устройства. Измеренный таким образом контрольный промежуток времени фиксируется (записывается) в паспорте устройства с указанием тестового вещества и двух значений показаний газоанализатора (S2 и S1).

Проверку работоспособности газоанализатора такого же типа, что и эталонный газоанализатор, который эксплуатировался в течение некоторого времени, и чувствительность которого могла измениться (например, снизиться вследствие загрязнения окна для УФ-лампы фотоионизационного детектора), производят так же, как и аттестацию. Проверяемый газоанализатор подключают к патрубкам 10 и 11 устройства и затем выполняют все вышеописанные действия. На фиг.2 приведена соответствующая газоанализатору с меньшей чувствительностью кривая 2, участок А которой относится к падению концентрации паров тестового вещества в сосуде 1 при работе компрессора 14, а участок В отражает нарастание концентрации паров тестового вещества во времени. Теперь моменту достижения показаний S1 соответствует время t1, а моменту достижения показаний S2 соответствует время t2.

Выключение компрессора 14 не обязательно должно происходить при достижении показаний S0, компрессор может быть выключен при любых показаниях газоанализатора, меньших, чем S1. Нарастание показаний определяется только чувствительностью газоанализатора, и для данного тестируемого газоанализатора нарастание показаний всегда будет происходить по прямой, параллельной участку В прямой 2, а значит и время t2-t1 будет тем же.

Поскольку чувствительность тестируемого газоанализатора меньше, чем эталонного, скорость нарастания показаний тестируемого газоанализатора также меньше, чем эталонного, т.е. тангенс угла наклона участка В кривой 2 меньше, чем тангенс угла наклона участка В кривой 1. В результате величина t2-t1 больше, чем t*2-t*1.

Таким образом, процесс тестирования сводится к измерению разницы t2-t1 и сравнению этой величины с контрольным промежутком времени t*2-t*1.

В процессе работы происходит постоянное уменьшение объема тестового вещества, находящегося в диффузионной ячейке, поэтому необходимо его периодически доливать, используя для этого патрубок 6.

1. Способ проверки работоспособности газоанализаторов с использованием источника паров тестового вещества, отличающийся тем, что тестовое вещество помещают во внутренний объем сосуда, создавая условия линейного возрастания концентрации паров вещества, подключают к сосуду вход и выход проверяемого газоанализатора, снабженного побудителем расхода, измеряют промежуток времени между двумя различными показаниями газоанализатора и сравнивают измеренный промежуток времени с предварительно установленным контрольным промежутком времени.

2. Способ по п.1, отличающийся тем, что тестовое вещество помещено в диффузионную ячейку.

3. Способ по п.1, отличающийся тем, что сосуд заполняют воздухом и поддерживают давление в нем равным атмосферному давлению путем соединения внутреннего объема сосуда с атмосферой.

4. Способ по п.3, отличающийся тем, что во внутреннем объеме сосуда производят циркуляцию воздуха для выравнивания концентрации паров тестового вещества в сосуде.

5. Способ по п.4, отличающийся тем, что поддерживают постоянную температуру в воздухе во внутреннем объеме сосуда.

6. Способ по п.1, или 2, или 3, или 4, или 5, отличающийся тем, что начальную концентрацию паров вещества в сосуде перед началом проверки работоспособности газоанализатора создают путем продувки внутреннего объема сосуда потоком очищенного от примесей атмосферного воздуха.

7. Способ по п.6, отличающийся тем, что концентрацию паров вещества во внутреннем объеме сосуда поддерживают меньшей концентрации насыщенного пара этого вещества при данной температуре.



 

Похожие патенты:

Изобретение относится к средствам метрологического обеспечения газоаналитической аппаратуры, а именно к устройствам для создания потока парогазовой смеси с заданной концентрацией пара.

Изобретение относится к области аналитического приборостроения, в частности, к устройствам для приготовления поверочных газовых смесей, используемых при градуировке и поверке газоанализаторов.

Изобретение относится к области аналитического приборостроения и может найти применение при градуировке и поверке газоанализаторов. .

Изобретение относится к газовой хроматографии и может быть использовано при анализе многокомпонентных смесей в различных областях техники. .

Изобретение относится к области приборостроения и может найти применение при градуировке и поверке газоанализаторов. .

Изобретение относится к области аналитического приборостроения и может найти применение при градуировке и проверке газоанализаторов. .

Изобретение относится к дозирующим устройствам и может быть использовано в инструментальных методах анализа агрессивных жидкостей. .

Изобретение относится к способам выделения и аналитического газохроматографического определения количества экстрагента в растительном сырье, преимущественно растительном масле. Способ определения количества экстрагента - н-гексана и петролейного эфира в растительном сырье, предпочтительно масле, заключается в том, что отбирают пробу растительного сырья, выделяют из нее оставшийся в ней экстрагент и затем проводят его газохроматографический анализ, экстрагент выделяют препаративной дистилляцией, причем предварительно в отобранную пробу добавляют растворитель, имеющий хроматографически определяемые собственные примеси в области хроматографического выхода н-гексана и компонентов петролейного эфира ниже 1-2% масс., при этом в качестве растворителя выбрано вещество из группы: изооктан, н-бутанол, н-бутилацетат, толуол, о-ксилол, а в пробу добавляют растворитель, количество которого к пробе составляет от 1 к 1 до 1 к 10. В результате достигается возможность повышения точности определения количества оставшегося в растительном сырье экстрагента за счет более полного его извлечения из растительного сырья. 1 з.п. ф-лы, 2 пр., 1 ил.

Настоящее изобретение относится к системе для анализа пластовых флюидов, таких как нефть (сжатая), содержащая газообразные пластовые флюиды. Аналитическая система для анализа пластовых флюидов содержит устройство для мгновенного испарения, сконфигурированное для частичного испарения сжатого пластового флюида, первую хроматографическую подсистему, содержащую первую колонку для хроматографии и первый контур отбора проб, и вторую хроматографическую подсистему, содержащую вторую колонку для хроматографии и второй контур отбора проб. Также система содержит одиночную систему сбора данных, соединенную с первой хроматографической подсистемой, второй хроматографической подсистемой и устройством для мгновенного испарения, и микропроцессор, соединенный с системой сбора данных, причем микропроцессор функционирует для оценки газового фактора сжатого пластового флюида, подаваемого на устройство для мгновенного испарения, исходя из данных, собираемых системой сбора данных. Техническим результатом является повышение точности результатов вплоть до и включая углеводороды C20 - для газовых проб и вплоть до и включая C36+ - для жидких проб и увлекаемой воды. 2 н. и 13 з.п. ф-лы, 19 ил.
Наверх