Способ выделения продуктивных коллекторов и определения их пористости в отложениях баженовской свиты

Использование: для выделения продуктивных коллекторов и определения их пористости в отложениях баженовской свиты. Сущность: заключается в том, что осуществляют отбор образцов керна из опорных скважин, исследуют образцы на содержание глинистой фракции и твердого органического вещества, проводят в каждой исследуемой скважине нейтронный и боковой методы каротажа, при этом на образцах керна из опорных скважин дополнительно измеряют содержание всех породообразующих минералов, элементный состав, состав органического вещества, распределение атомов урана по шлифам, отобранным по всему стволу каждой опорной скважины, и формируют объемную минерально-компонентную модель отложений баженовской свиты с определением петрофизических характеристик всех составляющих этой модели, кроме того, в каждой исследуемой скважине проводят дополнительно спектрометрический гамма-каротаж для определения концентраций калия, урана, тория, после чего строится зависимость водородосодержания, определенного по нейтронному каротажу, от содержания урана по спектрометрическому гамма-каротажу, выявляется зависимость между содержанием урана и водородосодержанием в твердом органическом веществе, а также зависимость между суммарным излучением калия и тория и водородосодержанием по нейтронному каротажу за вычетом водородосодержания в твердом органическом веществе, затем на основании полученных зависимостей определяют пористость для отложений баженовской свиты, а также оценивают продуктивность коллекторов в отложениях баженовской свиты. Технический результат: надежное определение продуктивных интервалов в соответствии с реальным наличием коллектора и повышение точности определения коэффициента пористости в толще отложений баженовской свиты. 2 табл., 14 ил.

 

Предлагаемый способ может быть использован в области геофизики для выделения коллекторов и определения емкостных свойств в отложениях баженовской свиты с помощью геофизических исследований скважин, например на отложениях месторождений Сургутского свода.

Наиболее близким к предлагаемому способу является способ выделения коллекторов в породах баженовской свиты, разработанный В.В.Хабаровым в 1980 гг. [1]. Этот метод основывается на показаниях гамма метода (ГК), нейтронного каротажа (НК) и показаниях фокусированного бокового каротажа (БК), и применяется в отложениях баженовской свиты на Сургутском своде с 1996 г. [2].

В известном способе по материалам литолого-физических исследований в разрезе свиты выделяются семь литологических типов пород (С1, С2, С3, Р1, Р2, Р3, Р4), что влечет за собой большее число расчетных формул для различных литологических пачек, что является недостатком этого способа.

Объемное содержание твердого органического вещества и глинистых минералов рассчитывается, используя данные гамма-каротажа (ГК).

Kтов=11,39+43,431·lgΔГК-12,4·(lgΔГК)2, ΔГК=Jгк/Jопорн, в качестве показаний ГК Jопорн опорных пластов принимаются однородные, толщиной более двух метров тонкоотмученные глинистые прослои в ачимовской толще, залегающие в 20-100 метрах от кровли баженовской свиты;

Kгл=77,56-159,06·lgΔГК+167,94·(lgΔГК)2-68,65·(lgΔГК)3, для пачек С1, Р3 и Р4

Kгл=60,0-124,3·lgΔГК+129,7·(lgΔГК)2-55,982·(lgΔГК)3, для пачек Р1, С2, Р2 С3.

Для пород, обогащенных карбонатным материалом в интервале ΔГК=0,5-0,97 для пачек Р3 и Р4, редко Р1 и Р2:

Кгл=155,3-593,5·ΔГК+846,6·ΔГК2-333,3·ΔГК3

Общее водородосодержание, полученное по НК для отложений баженовской свиты в способе В.В.Хабарова, представлено:

W=Кп·Wфл+Kгл·Wгл+Kтов·Wтов.

Следовательно, из данного выражения находится величина общей пустотности (пористости):

Кп=(W-(Kгл·Wгл+Kтов·Wтов))/Wфл,

где Wгл=0,24 Wтос=0,71 водородные индексы для глин и твердого органического вещества получены по керну, W - общее водородосодержание полученное по НКТ, Wфл - водородный индекс флюида, заполняющего поровое пространство:

Wфл=(W-(Kгл·Wгл+Kтов·Wтов))/wв+((W-(Kгл·Wгл+Kтов·Wтов))/Wн),

где wв - объемное содержание воды в пустотном пространстве, рассчитывающееся по формуле

wв=9.92-6.95·lgρk+1.95·lgρk2-0.2·lgρk3,

с помощью фокусированного бокового каротажа (БК)-ρk, а Wн=1,075 - водородный индекс нефти, полученный по керну.

Недостатками известного способа являются необходимость разбиения разреза свиты на семь литологических типов пород, использование эмпирически полученных формул, и то, что объемное содержание двух, не связанных между собой по физическим свойствам, составляющих данных отложений (Kтов - объемное содержание твердого органического вещества, Kгл - объемное содержание глинистых минералов), находится из показаний, полученных по одному методу (ГК).

Вышеуказанные недостатки не позволяют надежно выделять продуктивные коллектора и корректно рассчитывать пористость отложений баженовской свиты.

Задачей изобретения является надежное определение продуктивных интервалов, в соответствии с реальным наличием коллектора, и повышение точности определения коэффициента пористости в толще отложений баженовской свиты.

Эта задача решается за счет того, что осуществляют отбор образцов керна из опорных скважин, исследуют образцы для определения содержания глинистой фракции и твердого органического вещества, проводят в каждой исследуемой скважине нейтронный и боковой каротажи для определения величины пористости и выделения продуктивных коллекторов, при этом на образцах керна из опорных скважин дополнительно измеряют содержания всех породообразующих минералов, элементный состав, состав органического вещества, распределение атомов урана по шлифам, отобранным по всему стволу каждой опорной скважины, и формируют объемную минерально-компонентную модель отложений баженовской свиты с определением петрофизических характеристик всех составляющих этой модели; при этом в каждой исследуемой скважине проводят дополнительно спектрометрический гамма-каротаж для определения концентраций калия, урана, тория; после чего строится зависимость водородосодержания, определенного по нейтронному каротажу, от содержания урана по спектрометрическому гамма-каротажу:

W=F(URAN),

где W - водородосодержание, определенное по нейтронному каротажу;

URAN - содержание урана по спектрометрическому гамма-каротажу;

и выявляется связь между содержанием урана и водородосодержанием в твердом органическом веществе:

Wi=A·URAN+B,

где Wi - водородосодержание в твердом органическом веществе,

А и В - коэффициенты зависимости;

затем строится зависимость между суммарным излучением калия и тория и водородосодержанием по нейтронному каротажу за вычетом водородосодержания в твердом органическом веществе:

Δ=F(UeKTh),

где UeKTh-урановый эквивалент калия и тория,

Δ=W-Wi - водородосодержание по нейтронному каротажу за вычетом водородосодержания в твердом органическом веществе,

и выявляется связь между UeKTh и водородосодержанием в глинах (Δi)

Δi=С·UeKTh,

где Δi - водородосодержание в глинах;

С - коэффициент зависимости;

а коэффициент пористости для отложений баженовской свиты определяют по формуле

Кпi=(Δ-Δi)/wн,

где Кпi - коэффициент пористости,

wн - водородосодержание в нефти,

при этом продуктивными коллекторами являются отложения баженовской свиты, обладающие пористостью, отличной от нуля.

Надежность способа достигается за счет того, что исследуется коллекция керна и по результатам ее исследования настраивается система интерпретации данных каротажа, а в комплекс каротажа входит спектрометрический гамма-каротаж, позволяющий разделить общее гамма-излучение на излучения калия, тория и урана, а содержания каждого из этих элементов связано с отдельными составляющими отложений баженовской свиты. При этом зависимости, полученные на коллекции керна, позволяют находить связи между измеренными геофизическими параметрами.

Предлагаемый способ был опробован на отложениях баженовской свиты месторождений Сургутского свода. Известно, что породы баженовской свиты характеризуются повышенной радиоактивностью (естественная радиоактивность по гамма-каротажу - до 100-150 мкр/ч и более, значительно превышающая радиоактивность любых других осадочных пород), пониженной плотностью скелета (2,2-2,4 г/см3), высоким сопротивлением (до 10000 Ом·м), относительно высоким содержанием водорода (водородный индекс по нейтронному каротажу - 20-40%) [3].

Изобретение поясняется чертежами (фиг) и таблицами,

где на фиг.1 показано частотное распределение кремнистого вещества в породах баженовской свиты на Сургутском своде, на фиг.2 - результат f - радиофафии баженовской свиты. А - фото шлифа, Б - полученная с него реплика, на фиг.3 - зависимость содержания органического вещества от терригенного кварца, на фиг.4 - частотное распределение твердого органического вещества в образцах породы баженовской свиты на Сургутском своде, на фиг.5 - частотное распределение глинистых минералов в породах баженовской свиты на Сургутском своде, на фиг.6 - объемная минерально-компонентная модель отложений пород баженовской свиты на Сургутском своде, на фиг.7 - соотношение содержания урана и содержания органического вещества в породах баженовской свиты, на фиг.8 - зависимости концентраций калия (K), тория (Th) от концентрации глинистых минералов, на фиг.9 - концентрация урана, калия, тория в отложениях баженовской свиты по одной скважине и доля γ-излучения каждого из естественных радиоактивных элементов в общую радиоактивность пород: вклад калия в общую радиоактивность пород баженовской свиты, тория в общую радиоактивность пород баженовской свиты, вклад урана в общую радиоактивность пород баженовской свиты; урановый эквивалент калия, урановый эквивалент калия и тория, урановый эквивалент, результат БК, на фиг.10 - блок-схема расчета Кп по ядерным методам геофизических исследований скважин: СГК, ННК-т, на фиг.11 - связь между содержанием урана и водородосодержанием для пород баженовской свиты, на фиг.12 - связь между суммарным излучением калия и тория (урановый эквивалент) и содержанием водорода, на фиг.13 - сопоставление результатов, полученных по предлагаемого способа с результатами термокондуктивной дебитометрии, на фиг.14 - сопоставление результатов, полученных по предложенной методике (интервал притока) с результатами термокондуктивной дебитометри (СТД), влагометрии и термометра (с указанными временами замеров).

В Таблице 1 показаны пределы изменения содержания минералов и их среднее значение в породах баженовской свиты по данным рентгенно-структурного анализа, в Таблице 2 - значения плотности в макрокомпонентах по результатам петрофизической настройки.

Предлагаемый способ осуществляют следующим образом.

Формируют объемно-минеральную модель отложений. В объемно-минеральную модель входит как объемные содержания минералов твердой фазы и органического вещества твердой фазы, так и поровое пространство. Для построения такой модели используется система петрофизических уравнений, связывающая показания ряда методов геофизических исследований скважин и содержания компонент породы. К таким методам относятся методы радиоактивного каротажа: спектрометрический гамма каротаж (СГК), нейтронный каротаж (НК), гамма-гамма каротаж плотностной (ГГК-п). Для построения системы петрофизических уравнений определяют минеральный состав горных пород, содержание и состав твердого органического вещества и их физические свойства на керновом материале, и по этим данным формируют объемно-минеральную модель отложений, в рамках которой интерпретируют комплекс радиоактивных методов геофизических исследований скважин.

На основании проведенных исследований были выявлены следующие закономерности вещественного состава пород баженовской свиты Сургутского свода.

Основным породообразующим компонентом в баженовской свите является кремнистое вещество (фиг.1) (от 40% до 90%).

Кремнистое вещество состоит из двух компонентов: кремнистых остатков скелетов микроорганизмов (фиг.2А) и зерен кварца терригенного происхождения (фиг.3).

При этом необходимо отметить, что увеличение кремнезема органического происхождения связано с повышением доли органической составляющей. Повышение терригенной составляющей кремнистого вещества ведет к понижению доли органического вещества. При анализе распределения кремнистого вещества по породе хорошо наблюдаются две моды (фиг.1). Первая мода повышенного содержания кремнистого вещества связана с повышением доли органической составляющей и соответственно повышенным содержанием кремнезема органического происхождения. А вторая мода повышенного содержания кремнистого вещества соответствует понижению доли органической составляющей, но присуще повышению терригенного кварца. На фиг.3 показана зависимость содержания органического вещества от терригенного кварца.

Следующим по значимости компонентом объемно-минеральной модели является твердое органическое вещество (фиг.4) (от 1% до 20%).

Третьей составляющей отложений являются глинистые минералы. В результате проведенных исследований было доказано, что породы баженовской свиты содержат в себе глины (от 2% до 22%, фиг.5).

Таким образом, исследуемые породы баженовской свиты необходимо называть органогенными силицитами.

Четвертым компонентом в объемно-минеральной модели будет поровое пространство.

Таким образом, можно сформировать объемную минерально-компонентную модель пород баженовской свиты на Сургутском своде (фиг.6).

Известно, что поровое пространство, можно разделить на пористость блоковой части и межблоковую пористость [3]. По данным Сургутнефтегаза поровое пространство баженовской свиты заполнено нефтью, т.е. наличие пористости означает, что исследуемые отложения являются нефтенасыщенным коллектором. На образцах керна можно изучать только блоковую пористость, поэтому на фиг.6 представлена пористость именно этого типа.

По результатам исследования керна были сделаны следующие выводы: повышенная радиоактивность пород баженовской свиты, связана с излучением урана. Для выявления природы повышенного содержания урана в породах баженовской свиты были проведены исследования распределения урана по площади шлифа (метод f-радиографии). В результате было получено, что уран по породе распределен неравномерно. Уран концентрируется в органическом веществе (фиг.2А, Б), содержание урана доходит до первых процентов, тогда как силикатный скелет пород содержит его в пределах 2-4 г/тонну.

Статистическое сопоставление содержания урана и органического вещества по всей исследуемой коллекции керна показывает хорошую корреляцию между ними (фиг.7). Коэффициент корреляции составляет 0,67.

Концентрация калия и тория в породах баженовской свиты связана с содержанием глинистых минералов. Основными глинистыми минералами являются минералы группы иллита (см. таблицу 1), содержания калия и тория коррелируют между собой и глинистыми минералами (фиг.8).

Коэффициент корреляции калия и глинистых минералов составляет 0.78, коэффициент корреляции тория и глинистых минералов составляет 0.72.

Содержание водорода в баженовской свите определяется, в основном, твердым органическим веществом и в меньшей степени связано с глинистыми минералами и нефтью, располагающейся в поровом пространстве.

На уменьшение плотности скелета пород баженовской свиты, по отношению к вмещающим отложениям, оказывают влияние содержание твердого органического вещества (Таблица 2).

Повышенное сопротивление пород баженовской свиты, связано с тем, что проводимостью обладает физически связанная вода в глинистых минералах.

Расчет вклада урана в общую радиоактивность производится следующим образом.

VkladU=CU/Ue,

где СU - концентрация урана,

где Ue=СUTh·0.41+СK·1.74;

CTh, СK - концентрации тория и калия соответственно.

Расчет урановых эквивалентов калия и тория и их вкладов в общую радиоактивность ведется по следующим формулам

UeK=СK·1.74, UeKTh=СTh·0.41+СK·1.74,

VkladK=CK·1.74/Ue, VkladTh=CTh·0.41/Ue.

Коэффициенты, приведенные в формуле расчета уранового эквивалента, получены для аппаратурно-методического комплекса «МАРКА-ГС» при обработке измерений в государственных стандартных образцах для естественных радиоактивных элементов (ГСО-ЕРЭ, г.Раменское).

Из фиг.9. видно, что основной вклад в общую радиоактивность пород баженовской свиты вносит уран и составляет порядка 90%.

Такие аномальные физические свойства позволяют легко выделять породы баженовской свиты в разрезе скважины, но вызывают серьезные трудности при выделении коллекторов. Они выделяются по превышающему сопротивлению над величиной 35 Ом·м (эмпирически полученная величина на основании анализа при каротаже скважин отложений Сургутского свода), вкладу урана в общую радиоактивность более 60%.

Предлагаемый способ основан на определении общего водородосодержания пород баженовской свиты, полученного по нейтронному каротажу, которое складывается из водородосодержания в твердом органическом веществе, в глинах и в нефти, заполняющей поровое пространство.

W=wгл·Kгл+wТОВ·KТОВ+wН·Kп,

где Kгл - объемное содержание глинистых минералов в данных отложениях,

wгл - водородный индекс глин для пород баженовской свиты, составляющий 0.18 по результатам, полученным по керн,

wТОВ - водородный индекс органического вещества - 0.78, также по результатам исследований керна,

KТОВ - содержание твердого органического вещества в баженовской свите,

Kп - коэффициент пористости,

wН - водородный индекс нефти - 1.

Способ расчета Kп с использованием данных СГК заключается в последовательном исключении водородосодержания твердого органического вещества и глин.

Существенным отличием от известного способа является то, что для определения объемного содержания твердого органического вещества и глинистых минералов вместо интегрального метода ГК используют метод спектрометрического гамма каротажа (СГК). По СГК рассчитывают вклад каждого из радиоактивных элементов K, U и Tn в общую радиоактивность пород и их урановые эквиваленты.

Для построения петрофизических зависимостей, связывающих результаты обработки радиоактивных методов ГИС с объемной минерально-компонентной моделью, были проведены специальные петрофизические исследования и изучены результаты геофизических исследований на большом числе (более 100) скважин.

На фиг.10 представлена блок схема определения Кп по предлагаемому способу.

Так как концентрация урана является функцией органического вещества (фиг.7), а также органического вещество является основным водородосодержащим компонентом, то строится зависимость водородосодержания от содержания урана в породах баженовской свиты. Строится зависимость вида W=F(URAN), Wi=А·URAN+В (фиг.11).

Если текущие значения водородосодержания находятся выше кривой регрессии, то превышение водородосодержания в этих точках связано только с водородом, содержащимся в глинах и флюиде, заполняющем поровое пространство: Δw=W-(A·URANi+В), если Δw<0, Кпi=0.

Для исключения водорода глин используется связь между суммарным излучением калия и тория (урановый эквивалент) и содержанием водорода в баженовской свите Δ=F(UeKTh), Δi=C·UeKTh (фиг.12, по скважине 4).

Исходя из полученных петрофизических зависимостей можно рассчитать коэффициент пористости для данных отложений:

Кпi·wн=Δw-C·UeKThi, т.к. wн=1, следовательно, находим

Кпi=Δw-C·UeKThi.

Таким образом, предлагаемый способ позволяет более надежно и в соответствии с современными знаниями природы объекта выделять продуктивные коллектора в отложениях баженовской свиты на Сургутском своде, что подтверждено сравнением с промысловыми исследованиями работающих коллекторов.

Предложенный способ определения Кп был опробован на ряде скважин, вскрывших баженовскую свиту на Сургутском своде. Для проверки методики было проведено сопоставление выделенных интервалов с коллекторами, определенными по комплексу промысловых исследований, включающих термокондуктивную дебитометрию (СТД). Результаты сопоставления по скважинам приведены на фиг.13 (скважина 3) и фиг.14 (скважина 4).

На фиг.13 видно, что пласты, выделенные на глубинах 2920,2-2921,6, 2923,6-2924,2, 2930,8-2931,2, 2933,6-2934,6, 2937,5-2937,8 совпадают по обеим методикам. При этом необходимо отметить, что пласты, выделенные на глубине 2909,2-2909,8; 2911,1-2911,7; 2917,4-2918,4; 2937,0-2937,3 по комплексу радиоактивного каротажа, не отмечены по данным СТД. Расхождения между интервалами, полученными по СТД, и результатами предлагаемого способа, связаны с ошибкой измерения физических параметров как в методах СГК, ННК, так и термокондуктивной дебитометрии, а также с задавливанием потенциальных коллекторов в породах баженовской свиты при их вскрытии.

На фиг.14 представлено сопоставление результатов полученных предлагаемым способом с комплексом: термокондуктивная дебитометрия, влагометрия и термометром. Интервалы притока выделенные по СТД, влагомеру и термометру на глубине 2902,4-2903,4, 2904,0-2904,4, 2904,8-2905,6, 2906,2-2906,6, 2910,8-2911,2, 2911,8-2912,2, 2917,2-2917,6, 2918,4-2918,8.

В среднем по обработанным скважинам коэффициент совпадений составил порядка 70%.

Таким образом, предлагаемый способ позволяет достаточно надежно выделять коллектора в баженовской свите.

Список литературы

1. Хабаров В.В. «Разработка методики выделения нефтенасыщенных битуминозных глинистых коллекторов по данным промысловой геофизики (на примере отложений баженовской свиты Западной Сибири)», Автореферат диссертации на соискание ученой степени, ВНИИЯГГ, Москва, 1980 г.

2. Методика Определение подсчетных параметров, состава и механических свойств пород баженовской свиты месторождений ОАО «Сургутнефтегаз». Тюмень 1996 г.

3. Клубова Т.Т. Глинистые коллекторы нефти и газа. М.: Недра, 1988, 155 с.

Таблица 1.
Пределы изменения содержания минералов и их среднее значение в породах бамсеновской свиты по данным рентгенно-структурного анализа
№ ОбразцовГлубина отбораГруппа иллита
гидрослюдаиллитСмешаннослойныекаолинитСумма глин. мин.
12885.056.46.54.21.919
22885.556.46.62.3015.3
32885.714.37.24.51.717.7
42885.867.23.83.9115.9
52886.207.14.33.20.515.1
62887.3610.36.23.91.622
72887.753.83.61.61.310.3
82888.073.32.52.51.810.1
92888.921.41.20.90.94.4
102890.605.66.440.916.9
112890.878.14.83.6117.5
122891.154.752.3012
132891.3210.26.34.10.721.3
142893.852.12.81.40.46.7
152894.083.52.51.21.58.7
162898.2302.12.804.9
172898.941.31.62.505.4
182899.2634.11.808.9
192899.53.92.73.209.8
202899.671.74.4208.1
212900.272.41.52.606.5
222900.9011.32.104.4
232901.201.201.91.64.7
242902.21.61.10.30.43.4
252903.25101.202.2
262903.585.24.431.914.5
272903.684.14.52.30.611.5
282904.135.73.41.90.911.9
292904.601.20.91.60.94.6
302905.358.25.82.8016.8
312906.075.45.96.8220.1
322907.6021.62.12.98.6
332908.051.22.20.91.55.8
342909.432.83.81.91.910.4
352911.005.732.62.313.6
362911.633.85.13.1315
372913.355.34.13.61.514.5

Таблица 2.
Значения плотности в макрокомпонентах по результатам петрофизической настройки
КомпонентПлотность
Глина2,60
Органическое вещество1,15
Кремнистое вещество2,65

Способ выделения продуктивных коллекторов и определения их коэффициента пористости в отложениях баженовской свиты, включающий отбор образцов керна из опорных скважин, исследование образцов для определения содержания глинистой фракции и твердого органического вещества, проведение в каждой исследуемой скважине нейтронного и бокового методов каротажа для определения величины пористости и выделения продуктивных коллекторов, отличающийся тем, что на образцах керна из опорных скважин дополнительно измеряют содержания всех породообразующих минералов, элементный состав, состав органического вещества, распределение атомов урана по шлифам, отобранным по всему стволу каждой опорной скважины, и формируют объемную минерально-компонентную модель отложений баженовской свиты с определением петрофизических характеристик всех составляющих этой модели, при этом в каждой исследуемой скважине проводят дополнительно спектрометрический гамма-каротаж для определения концентраций калия, урана, тория, после чего строится зависимость водородосодержания, определенного по нейтронному каротажу, от содержания урана по спектрометрическому гамма-каротажу:

W=F(URAN),

где W - водородосодержание, определенное по нейтронному каротажу;

URAN - содержание урана по спектрометрическому гамма-каротажу,

и выявляется связь между содержанием урана и водородосодержанием в твердом органическом веществе:

Wi=A·URAN+B,

где Wi - водородосодержание в твердом органическом веществе;

А и В - коэффициенты зависимости,

затем строится зависимость между суммарным излучением калия и тория и водородосодержанием по нейтронному каротажу за вычетом водородосодержания в твердом органическом веществе:

Δ=F(UeKTh),

где UeKTh - урановый эквивалент калия и тория;

Δ=W-Wi - водородосодержание по нейтронному каротажу за вычетом водородосодержания в твердом органическом веществе,

и выявляется связь между UeKTh и водородосодержанием в глинах (Δi)

Δi=C·UeKTh,

где Δi - водородосодержание в глинах;

С - коэффициент зависимости,

а коэффициент пористости для отложений баженовской свиты определяют по формуле:

Кпi=(Δ-Δi)/wн,

где Кпi - коэффициент пористости;

wн - водородосодержание в нефти,

при этом продуктивными коллекторами являются отложения баженовской свиты, обладающие пористостью, отличной от нуля.



 

Похожие патенты:

Изобретение относится к области геофизических исследований скважин. .

Изобретение относится к геофизическим исследованиям скважин, а именно к группе ядерно-физических методов исследования минерального сырья. .

Изобретение относится к недеструктивному анализу природных сред, а более конкретно к группе геофизических методов, предназначенных для количественной оценки качества руд в естественном залегании, например в скважинах, и может быть использовано при поисках и разведке железных руд в геологии и геофизике.

Изобретение относится к области геофизики и может быть использовано при поисках, разведке и эксплуатации нефтяных месторождений. .

Впт б // 374567

Изобретение относится к нефтегазодобывающей промышленности и предназначено для диагностики прискважинной зоны пластов

Изобретение относится к горному делу и может быть использовано в области геофизики. Техническим результатом является повышение качества и надежности интерпретации данных каротажа. Способ включает проведение геофизических исследований скважины (ГИС) с использованием импульсного нейтрон-гамма спектрометрического каротажа, определение компонентного состава пород, включая пористость и коэффициент текущего нефтенасыщения (Кн). Предварительно подготавливают коллекцию образцов керна из коллекторов, вскрытых опорными скважинами, по результатам исследования которой определяют текущую водонасыщенность (Кв), коэффициенты относительной фазовой проницаемости по нефти и по воде ( ), экспоненциальные значения относительной водо- и нефтепроницаемости (nв nн), коэффициент глинистости (Кгл), коэффициент пористости (Кп), петрофизические параметры (a, b) связи коэффициента остаточной водонасыщенности и отношения объемной глинистости к пористости, коэффициент остаточной нефтенасыщенности (Кно), далее рассчитывают коэффициент остаточного водонасыщения Кво=a*(Кгл/Кп)+b, после чего вычисляют коэффициент обводненности притока (Коп) и по полученному коэффициенту обводненности проводят оценку ожидаемого состава притока. 3 ил.

Изобретение относится к области прикладной ядерной геофизики, группе геофизических методов, предназначенных для оценки технического состояния ствола газовых скважин, и может быть использовано в газодобывающей отрасли при решении вопросов эксплуатации и ремонта газовых скважин месторождений и подземных хранилищ газа (ПХГ). Техническим результатом является повышение надежности и технологичности выявления каверн в прискважинной зоне высокодебитных газоотдающих коллекторов в условиях газозаполненных скважин. Способ заключается в облучении горных пород потоком быстрых нейтронов, радиальном зондировании газоотдающего коллектора многозондовой модификацией нейтронного метода и/или комплексом разноглубинных нейтронных методов и регистрации данных в виде каротажных диаграмм, при этом сравнивают результаты измерений и по наличию инверсии наименее глубинных показаний зондов относительно наиболее глубинных показаний, характеризующих газоотдающий коллектор, выявляют технологическую каверну. 7 ил.

Настоящее изобретение относится к области геофизики и может быть использовано для определения пористости пласта, окружающего скважину. Согласно заявленному предложению буровой раствор проникает в пласт на определенное расстояние, представляющее собой функцию времени. Выполняются первое и второе измерения пористости в первый момент времени и во второй момент времени. Первое измерение пористости относится к типу, выбранному для индикации измерения пористости в присутствии газа, отличающегося по сравнению со вторым измерением пористости. Первое и второе измерения пористости выбираются таким образом, чтобы обеспечивать практически одну и ту же глубину исследования в пласте и испытывать приблизительно пропорциональное воздействие за счет газа. Технический результат - повышение точности данных исследования. 2 н. и 5 з.п. ф-лы, 18 ил.

Изобретение относится к области геофизики и может быть использовано для выделения в разрезах скважин продуктивных коллекторов, в частности коллекторов, насыщенных газогидратами. Предложенный способ заключается в проведении исследований методами плотностного гамма-гамма-каротажа и нейтронного каротажа и вычислении коэффициента пористости по данным того и другого метода. Коллекторы, насыщенные газогидратами, выделяют по превышениям значений коэффициентов пористости, вычисленных по плотностному гамма-гамма-каротажу, над значениями, вычисленными по нейтронному каротажу. Технический результат - повышение точности разведочных данных. 2 ил.

Использование: для оценки перспективности территорий распространения нефтематеринских пород на нефть и газ. Сущность изобретения заключается в том, что выполняют отбор образцов керна из скважин, выделение из образцов проб нерастворимого органического вещества НОВ, исследование образцов методом гамма-каротажа и оптической микроскопии, при этом в отобранных образцах керна определяют гамма-активность урана по керну, затем определяют значения показателя r по соотношению значений гамма-активности по каротажу к гамма-активности урана по керну, по этим значениям устанавливают тип отложений, различающихся по содержанию органического углерода Сорг для доманикоидов, доманикитов и сланцев, отбирают для дальнейших исследований пробы керна из интервалов с наибольшими значениями гамма-активности по каротажу, из отобранных проб выделяют нерастворимое органическое вещество (НОВ), определяют в нем содержание урана, рассчитывают коэффициент корреляции ki между радиоактивностью НОВ и значением гамма-активности каротажа, сравнивают его со значениями k соответствующего типа отложений и определяют перспективную зону генерации углеводородов, затем в отобранных пробах НОВ проводят оценку зрелости органического вещества на уровне градаций катагенеза методом микроскопии и ИК-спектроскопии и по данным зрелости органического вещества выявляют перспективные зоны генерации углеводородов. Технический результат: повышение достоверности и экспрессности определения зон генерации углеводородов в доманикоидных и сланценосных отложениях. 3 з.п. ф-лы, 2 табл., 2 ил.

Использование: для определения компонентного состава пород хемогенных отложений. Сущность изобретения заключается в том, что выполняют геофизические исследования акустическим, гамма-плотностным, нейтронным и гамма-спектральным методами по стволу скважины в разрезе хемогенных отложений с шагом дискретизации по глубине 0.1 м и на каждой точке глубины путем алгоритмического решения системы уравнений при четырех измеренных геофизических параметрах и известных физических свойствах скелетной части пород определяют количественное содержание преобладающих 5-ти компонент породы, включающей галит, ангидрит, сильвинит, кальцит и глины. Технический результат: повышение точности и достоверности определения литологического состава и оценки количественного содержания компонент горных пород в разрезах хемогенных отложений. 2 табл., 1 ил.

Изобретение относится к области геофизики, к интерпретации материалов геофизических исследований скважин (ГИС) на стадиях разведки и разработки месторождений углеводородов и предназначено для обнаружения трещин. Техническим результатом является достоверное определение зоны трещиноватости и наличие открытых и закрытых трещин для выявления с учётом этих данных интервалов притока нефти, прорыва воды. Проводят исследование пласта различными геофизическими приборами с построением кривых нейтронного гамма каротажа (НГК), гамма каротажа (ГК), кривых кажущегося сопротивления (КС), потенциала самопроизвольной поляризации (ПС). Определяют наличие трещин по наличию синхронных экстремумов, где синхронные отклонения ГК и ПС в сторону минимальных значений, КС - в любую сторону экстремума - открытые трещины. Синхронные отклонения ГК и ПС в сторону максимальных значений, КС - в сторону минимальных значений - закрытые трещины. 1 ил.

Использование: для определения содержания ванадия и редкоземельных элементов по гамма-активности осадочных пород глубоких скважин. Сущность изобретения заключается в том, что выполняют отбор образцов керна из скважин, исследуют образцы проб методом гамма-каротажа и определяют гамма-активность урана по керну, при этом из исследованных образцов отбирают образцы керна с наибольшими значениями характеристики гамма-каротажа, которые затем исследуют на гамма-спектрометре на остаточную активность по урану и торию, по величине соотношения гамма-активности урана и тория f определяют тип породы, по типу породы определяют значение коэффициента корреляции по урану и редкоземельным элементам для образца fi, в соответствии с литотипом пород выбирают коэффициенты корреляции Кuv (урана - ванадия) и КThTr (тория - редкоземельных элементов) для данного типа отложений, далее определяют количество рудного компонента с учетом поинтервального и площадного распространения. Технический результат: повышение достоверности и экспрессности определения интервалов разрезов скважин с рудогенным содержанием ванадия и редкоземельных элементов. 2 з.п. ф-лы, 2 ил., 4 табл.
Наверх