Устройство возбуждения плазмы газового разряда

Изобретение относится к возбуждению и стабилизации плазмы газового разряда и может быть использовано в газовых лазерах, в системах типа «Токамак» и т.п. Устройство возбуждения плазмы газового разряда состоит из разрядной камеры, высокочастотного генератора возбуждения плазмы, который через обмотку связи индуктивно связан с соленоид-резонатором, источника постоянного тока, соединенного с соленоид-резонатором, концы которого коротко замкнуты по высокой частоте с помощью конденсатора, при этом соленоид-резонатор состоит из секций, отводы от секций соленоид-резонатора подключены соответственно к электронным ключам, которые соединены с накопительными элементами, подключенными к источнику тока, управляющие электроды электронных ключей соединены с соответствующими выходами блока управления. Технический результат: стабилизация плазмы газового разряда за счет создания продольного бегущего импульсного стабилизирующего магнитного поля. 2 ил.

 

Изобретение относится к возбуждению и стабилизации плазмы газового разряда и может быть использовано в газовых лазерах, в системах типа «Токамак» и т.п.

Известное устройство для возбуждения плазмы газового разряда в газовых лазерах [Райзер Ю.П. «Основы современной физики газоразрядных процессов» - М.: Наука, 1980-415 с.] содержит высокочастотный генератор и блок согласования высокочастотного генератора с разрядной камерой. Это позволяет создавать в разрядной камере лазера газоразрядную плазму, необходимую для возбуждения активной среды. Основной задачей при создании устройства возбуждения плазмы газового разряда является стабилизация плазмы.

Известное устройство для возбуждения плазмы газового разряда [авторское свидетельство СССР №444293, МКИ Н01S 3/22, Б.И. №35, 25.09.74], выбранное в качестве прототипа, содержит газоразрядную трубку, соединенную с высокочастотным генератором возбуждения, источник тока, соленоид-резонатор и катушку связи, в которые помещена газоразрядная трубка. Для повышения эффективности возбуждающая обмотка выполнена в виде соленоид-резонатора и индуктивно связана с обмоткой связи, причем концы соленоида-резонатора коротко замкнуты на частоте возбуждения плазмы с помощью конденсаторов и соединены с источником постоянного тока для создания продольного магнитного поля. Это дает возможность эффективно возбуждать плазму газового разряда от ВЧ-генератора и создавать продольное стабилизирующее постоянное магнитное поле, используя обмотки соленоид-резонатора. Однако известное устройство не позволяет обеспечить стабильность плазмы газового разряда в том случае, когда инкремент нарастания неустойчивости начинает превышать критическое значение, при котором малые возмущения, отклоняющие плазму от стационарного состояния, начинают быстро возрастать.

Решаемая техническая задача изобретения заключается в стабилизации плазмы газового разряда за счет создания продольного бегущего импульсного стабилизирующего магнитного поля.

Эта задача в устройстве возбуждения плазмы газового разряда, состоящего из разрядной камеры, высокочастотного генератора возбуждения плазмы, который через обмотку связи индуктивно связан с соленоид-резонатором, источника постоянного тока, соединенного с соленоид-резонатором, концы которого коротко замкнуты по высокой частоте с помощью конденсатора, достигается тем, что соленоид-резонатор состоит из секций, отводы от секций соленоид-резонатора подключены соответственно к электронным ключам, которые соединены с накопительными элементами, подключенными к источнику тока, управляющие электроды электронных ключей соединены с соответствующими выходами блока управления.

На фиг.1 изображено предлагаемое устройство возбуждения плазмы газового разряда в линейной конструкции разрядной камеры; на фиг.2 изображено предлагаемое устройство возбуждения плазмы газового разряда в тороидальной конструкции разрядной камеры.

Устройство содержит разрядную камеру 1, высокочастотный генератор возбуждения плазмы 2, который через обмотку связи 3 индуктивно связан с соленоид-резонатором 4, концы которого коротко замкнуты с помощью конденсатора 5; источник постоянного тока 6, который соединен с соленоид-резонатором 4; отводы от секций соленоид-резонатора 4 подключены к электронным ключам 7, к противоположным электродам электронных ключей 7 соответственно подключены накопительные элементы 8, представленные на фиг.1 и фиг.2 конденсаторами, которые подключены к источнику тока 9; управляющие электроды электронных ключей 7 соответственно соединены с выходами блока управления 10.

Высокочастотный генератор возбуждения плазмы 2 может быть выполнен, например, по схеме, приведенной в [А.Г.Самойлов, С.А.Самойлов, П.А.Полушин, Радиотехника и электроника, №6, с.53-57, 1996 г.], блок управления 10 может быть выполнен по схеме, приведенной в [Джеффри Тревис, Lab View для всех. - М.: ПриборКомплект, 2004 г. с.544], источник постоянного тока 6 и источник тока 9 могут быть выполнены по схеме, приведенной в [Багинский Б.А., Макаревич В.Н., Приборы и техника эксперимента №6, с.116-118, 1989 г.].

Рассмотрим предлагаемое устройство в работе.

После включения питания высокочастотного генератора возбуждения плазмы 2 в соленоид-резонаторе 4 устанавливается стоячая волна электромагнитного поля, продольная электрическая составляющая которого взаимодействует с плазмой газового разряда и эффективно передает ей энергию. Конденсатор 5 замыкает концы соленоид-резонатора 4 между собой, что позволяет подключить к ним источник постоянного тока 6, за счет энергии которого создается продольное магнитное поле, удерживающее плазму вдоль оси разрядной камеры. С выходов блока управления 10 на электронные ключи 7 поочередно подаются отпирающие импульсы, которые поочередно открывают электронные ключи 7. Это позволяет за счет энергии, накопленной в накопительных элементах 8, сформировать импульсный ток, протекающий в обмотках секций соленоид-резонаторе 4, и создать в плазме газового разряда бегущее импульсное стабилизирующее магнитное поле, скорость перемещения которого вдоль плазмы определяется периодом следования отпирающих импульсов. Величина напряженности этого магнитного поля больше, чем стабилизирующего постоянного магнитного поля. Скорость перемещения бегущего импульсного стабилизирующего магнитного поля вдоль плазмы выбирается так, чтобы время между проходами импульсного стабилизирующего магнитного поля через любую точку плазмы было меньше времени, за которое под действием неустойчивости отклонение плазмы от стационарного состояния достигнет критической величины (например, плазма коснется стенки).

Устройство возбуждения плазмы газового разряда, состоящее из разрядной камеры, высокочастотного генератора возбуждения плазмы, который через обмотку связи индуктивно связан с соленоид-резонатором, источника постоянного тока, соединенного с соленоид-резонатором, концы которого коротко замкнуты по высокой частоте с помощью конденсатора, отличающееся тем, что соленоид-резонатор состоит из секций, отводы от секций соленоид-резонатора подключены соответственно к электронным ключам, которые соединены с накопительными элементами, подключенными к источнику тока, управляющие электроды электронных ключей соединены с соответствующими выходами блока управления.



 

Похожие патенты:

Изобретение относится к лазерной технике и может быть использовано для создания и поддержания требуемой концентрации галогеноводорода в активной области газоразрядной трубки.

Изобретение относится к лазерной технике и может быть использовано для создания и поддержания требуемой концентрации галогеноводорода в активной области газоразрядной трубки.

Изобретение относится к газовым лазерам и может быть использовано в научных целях, лазерных технологиях, медицине, в лазерной хирургии и косметологии. .

Изобретение относится к вакуумной технике и может быть использовано для изготовления газовых лазеров. .

Изобретение относится к лазерной технике и может быть использовано в технологических процессах. .

Изобретение относится к квантовой электротехнике и может быть использовано в качестве схемы возбуждения лазеров на парах металлов. .

Изобретение относится к лазерной технике и используется в сверхзвуковых газовых лазерах непрерывного действия с проточной активной средой на рабочих молекулах фтористого водорода (HF) и фтористого дейтерия (DF).

Изобретение относится к лазерной физике и оптике и может быть использовано в системах преобразования солнечной энергии в лазерное излучение с последующей передачей этой энергии потребителю.

Изобретение относится к области лазерной физики и может быть использовано при производстве возбуждаемых поперечным разрядом отпаянных СО2 лазеров с высокой долговечностью.

Изобретение относится к лазерной технике. .

Изобретение относится к области технической физики и может быть использовано в технологическом процессе изготовления активных элементов для лазеров

Изобретение относится к области квантовой электроники и может быть использовано при разработке и создании эксимерных лазеров с импульсом излучения короткой длительности и малой расходимости

Изобретение относится к области создания мощной лазерной техники для технологических целей, преимущественно фотоионизационных CO2(СО)-лазеров, а также лазеров на основе Ar:Хе, O2:I2, и может быть использовано при возбуждении плазмохимических сред и создании плазмохимических реакторов различного назначения

Изобретение относится к лазерной физике и может быть использовано для повышения мощности и эффективности генерации электроразрядных СО лазеров, а также для создания мощного компактного электроразрядного СО лазера или усилителя ИК-излучения

Изобретение относится к области приборостроения и может быть использовано при разработке и создании мощных и эффективных эксимерных лазеров с импульсом излучения длительностью 20-40 нс

Изобретение относится к квантовой электронике и может быть использовано при разработке технологических химических кислородно-йодных лазеров и лазеров специального назначения

Изобретение относится к квантовой электронике и может быть использовано при разработке активных элементов лазеров на парах галогенидов металлов, например, бромида меди

Изобретение относится к квантовой электронике, в частности к компактным импульсно-периодическим эксимерным лазерам с УФ предыонизацией
Наверх