Способ получения изопрена

Изобретение относится к способу получения изопрена путем жидкофазного взаимодействия формальдегида и изобутилена или веществ, являющихся их источниками, например 4,4-диметил-1,3-диоксана и триметилкарбинола, в присутствии водного раствора кислотного катализатора, осуществляемому при повышенной температуре и давлении с получением продуктов реакции и балансового количества воды в виде парового потока, с последующим охлаждением, конденсацией и разделением на водный и органический слои, с переработкой органического слоя, включающей выделение рециклового изобутилена, целевого изопрена, рециклового триметилкарбинола и высококипящего остатка, с переработкой водного слоя, включающей выделение органических продуктов, в том числе триметилкарбинола, с выводом жидкого потока водного раствора катализатора на экстракцию, с последующим возвратом в зону синтеза, при этом выделение триметилкарбинола из продуктов синтеза осуществляют путем экстракции водой с последующим выделением из полученных водных растворов. Предлагаемый способ позволяет увеличить выход изопрена до 71,6% по формальдегиду и 73,9% по изобутилену. 4 з.п. ф-лы, 6 ил.

 

Изобретение относится к способам получения изопрена из изобутилена и формальдегида.

Изопрен находит широкое применение в качестве мономера для получения каучуков, по свойствам близких к натуральному, а также в органическом синтезе.

Известен ряд способов получения изопрена путем жидкофазного взаимодействия формальдегида и изобутилена или веществ, являющихся их источниками, например 4,4-диметил-1,3-диоксана и триметилкарбинола, в присутствии водного раствора кислотного катализатора, осуществляемый при повышенной температуре и давлении в одну или несколько ступеней контактирования, с отбором на последней ступени контактирования продуктов реакции и балансового количества воды в виде парового потока, с последующим охлаждением, конденсацией и разделением на водный и органический слои, с переработкой органического слоя, включающей выделение рециклового изобутилена, целевого изопрена, рециклового триметилкарбинола и высококипящего остатка, с переработкой водного слоя, включающей выделение органических продуктов, с выводом жидкого потока водного раствора катализатора на экстракцию, с последующим возвратом в зону синтеза [USP 4511751, пат. РФ 2280022, ЕР 0106323].

Во всех известных способах, в частности в способе по ЕР 0106323, переработка отгоняемых продуктов синтеза включает их охлаждение и конденсацию, разделение конденсата на водный и органический слои, выделение из органического слоя последовательной ректификацией рециклового изобутилена, целевого изопрена, фракции триметилкарбинола и высококипящего остатка, отгонку из водного слоя легкокипящих органических продуктов (в основном триметилкарбинола) и сбросом оставшейся воды на очистку (химзагрязненая сточная вода).

Для обеспечения высокой селективности процесс синтеза изопрена, как правило, осуществляется при стехиометрическом избытке изобутилена и/или триметилкарбинола. Вне зависимости от того, используется ли в процессе изобутилен или триметилкарбинол, выходящий из процесса поток содержит смесь этих веществ в соотношении, близком к равновесному. Таким образом, все известные способы получения изопрена предполагают выделение и рецикл триметилкарбинола.

Проведенные нами исследования известных способов получения изопрена показали, что фракция триметилкарбинола, выделенная из продуктов синтеза ректификацией, содержит значительное количество (более 20%) примесей углеводородов и карбонильных соединений, которые имеют близкие температуры кипения, азеотропны с триметилкарбинолом и водой, присутствующей в продуктах, и не могут быть отделены простой ректификацией.

Рецикл выделенной ректификацией фракции триметилкарбинола в реакционную зону синтеза изопрена приводит к накоплению в продуктах синтеза вышеуказанных примесей, что в свою очередь приводит к снижению селективности синтеза, необходимости отвода части фракции триметилкарбинола на утилизацию и соответственно к ухудшению показателей процесса по расходу сырья и энергозатратам.

Более подробное изучение состава примесей в выделенной ректификацией фракции триметилкарбинола показало, что основными продуктами являются углеводороды C8-C10 и карбонильные соединения (смесь альдегидов и кетонов с общей формулой С5Н10О). В меньших количествах присутствуют метил-трет-бутиловый эфир, метилаль, изоамиленовые спирты и ряд неидентифицированных продуктов. Проведенные исследования показали, что присутствующие углеводороды C810 и карбонильные соединения образуют с триметилкарбинолом и водой азеотропные смеси с температурами кипения в интервале 74-85°С и естественным образом отгоняются вместе с триметилкарбинолом (Ткип.82,5°С).

Целью настоящего изобретения является устранение указанных недостатков.

Цель была достигнута путем разработки технических приемов, позволяющих отделить от триметилкарбинола примеси нераздельнокипящих и близкокипящих веществ и исключить их накопление в реакционной смеси и в продуктах синтеза при рецикле фракции триметилкарбинола.

Мы предлагаем способ получения изопрена путем жидкофазного взаимодействия формальдегида и изобутилена или веществ, являющихся их источниками, например 4,4-диметил-1,3-диоксана и триметилкарбинола, в присутствии водного раствора кислотного катализатора, осуществляемый при повышенной температуре и давлении с получением продуктов реакции и балансового количества воды в виде парового потока, с последующим охлаждением, конденсацией и разделением на водный и органический слои, с переработкой органического слоя, включающей выделение рециклового изобутилена, целевого изопрена, рециклового триметилкарбинола и высококипящего остатка, с переработкой водного слоя, включающей выделение органических продуктов, в том числе триметилкарбинола, с выводом жидкого потока водного раствора катализатора на экстракцию, с последующим возвратом в зону синтеза, при этом выделение триметилкарбинола из продуктов синтеза осуществляют путем экстракции водой с последующим выделением из полученных водных растворов.

Нами было обнаружено, что при экстракции водой органического слоя продуктов синтеза или органического слоя после выделения изобутилена и изопрена или фракции триметилкарбинола, выделенной из продуктов синтеза ректификацией, триметилкарбинол переходит в водную фазу, а другие продукты синтеза образуют легкоотслаивающуюся органическую фазу, т.е. малорастворимы в водной фазе.

В зависимости от условий осуществления экстракции удается перевести в водную фазу 80-99% триметилкарбинола и отделить более 95% остальных продуктов синтеза.

Экстракция может осуществляться любыми известными приемами, тем не менее лучшие результаты достигаются при использовании противоточной экстракции в насадочных или тарельчатых колонных аппаратах.

Объемное соотношение воды и содержащих триметилкарбинол фракций, подаваемых на экстракцию, может быть от 1 до 10. Однако для обеспечения необходимой глубины и селективности извлечения триметилкарбинола оптимальным является соотношение от 2,0 до 5,0. Температура экстракции может быть любая, однако в плане экономии энергоресурсов на охлаждение и нагрев потоков оптимальным является интервал 30-70°С.

В результате осуществления экстракции образуются водные растворы триметилкарбинола, из которых он может быть либо отогнан в виде азеотропа с водой, имеющего температуру кипения 79,9°С и содержащего 11-12% воды, либо экстрагирован углеводородами С4, используемыми в процессе, а именно изобутиленом или изобутиленсодержащей фракцией. Оставшаяся вода может быть рециркулирована на экстракцию.

В результате проведенных исследований нами также установлено, что водный слой конденсата продуктов синтеза содержит 5-7% триметилкарбинола и незначительное количество других органических продуктов. Фракция органических продуктов, выделяемая из воды перед сбросом ее в химзагрязненную канализацию, содержит в основном триметилкарбинол (более 95% от суммы органических продуктов) и может быть рециркулирована в процесс без дополнительной очистки.

Таким образом, при выделении триметилкарбинола из водных растворов отгонкой в технологической схеме процесса в соответствии с предлагаемым изобретением две ректификационные колонны выполняют одну и ту же функцию, а именно отгонки триметилкарбинола из водного раствора.

С целью упрощения технологической схемы процесса отгонка легких органических продуктов (триметилкарбинола) из водного слоя конденсата продуктов синтеза и отгонка триметилкарбинола из водного раствора, образующегося при водной экстракции фракций продуктов синтеза, могут осуществляться в одной ректификационной колонне. При этом образующаяся в качестве кубового продукта вода может использоваться для экстракции фракций продуктов синтеза.

В случае выделения триметилкарбинола из водных растворов экстракцией углеводородами C4 могут быть использованы либо концентрированный изобутилен, выделяемый из продуктов синтеза и рециркулируемый в процесс, либо изобутиленсодержащая фракция, используемая для получения сырья процесса (триметилкарбинола или диметилдиоксана). Полученная в результате экстракции смесь углеводородов C4 и триметилкарбинола используется в процессе без разделения, а остающаяся после выделения триметилкарбинола вода может вновь использоваться для экстракции фракций продуктов синтеза.

Существенными отличительными признаками предлагаемого способа являются очистка выделенного при разделении продуктов синтеза триметилкарбинола от примесей углеводородов C8-C10 и карбонильных соединений общей формулы С5Н10О и рецикл в процесс очищенного триметилкарбинола.

Способ позволяет осуществлять непрерывный процесс с рециклом выделенного из продуктов синтеза триметилкарбинола, избежать ухудшения показателей синтеза за счет рецикла и накопления примесей, исключить потери триметилкарбинола.

Промышленная осуществимость способа иллюстрируется примерами 1-5, примеры 6 и 7 даны для сравнения.

Пример 1.

Принципиальная схема установки для осуществления способа согласно предлагаемому изобретению приведена на фиг.1.

Установка включает реактор 1, сепаратор 2, холодильник 3, холодильник-конденсатор 4, емкость-отстойник 5, смеситель 6, емкость-отстойник 7, колонну отгонки изобутилена 8, колонну отгонки изопрена 9, противоточный экстрактор 10, колонны отгонки триметилкарбинола 11 и 12.

В реактор 1, представляющий собой автоклав объемом 5 литров с мешалкой с герметичным электромагнитным приводом и термостатирующей рубашкой, загружают 4,5 литра 7%-ного водного раствора ортофосфорной кислоты, при включенном перемешивании в термостатирующую рубашку подают горячий теплоноситель и нагревают реактор до температуры 160°С.

В реактор подают 40%-ный формалин с расходом 256,5 г/час и концентрированный изобутилен с расходом 1747,2 г/час. Выходящий из реактора парожидкостный поток поступает в сепаратор 2, где разделяется на жидкую и паровую фазы.

Пары продуктов реакции и непревращенного сырья, выходящие из сепаратора 2, проходят холодильник-конденсатор 4, где охлаждаются и конденсируются, и поступают в емкость-отстойник 5, где расслаиваются на водный и органический слои.

Давление в реакционном узле (реактор, сепаратор, холодильник, отстойник) поддерживают на уровне 12-14 атм.

Поток жидких продуктов, представляющий собой смесь водного раствора ортофосфорной кислоты и высококипящих побочных продуктов, выводят из сепаратора 2 в количестве 1,6 л/час, охлаждают в холодильнике 3 и подают в смеситель 6 на экстракцию органических продуктов. В качестве экстрагента в смеситель 6 подают органический слой продуктов синтеза из емкости 5. Выходящая из смесителя 6 смесь поступает в емкость-отстойник 7, где расслаивается на органический слой, содержащий проэкстрагированные высококипящие побочные продукты, и водный раствор ортофосфорной кислоты.

Очищенный от высококипящих органических продуктов водный раствор ортофосфорной кислоты из емкости 7 насосом возвращают обратно в реактор 1.

Органический слой из емкости 7 подают на разделение. Сначала в ректификационной колонне 8 выделяют изобутилен в количестве 1561,6 г/час, который рециркулируют в реактор 1, а затем в ректификационной колонне 9 выделяют изопрен в количестве 166,5 г/час, который подают на очистку.

Кубовый продукт колонны 9 в количестве 296,7 г/час, представляющий собой смесь побочных продуктов синтеза и содержащий 74,8% триметилкарбинола, 1,7% углеводородов C810, 2,1% карбонильных соединений общей формулы С5Н10О, 4,0% метилдигидропирана, 0,3% диметилдиоксана, 1,0% изоамиленовых спиртов и 16,1% прочих продуктов, подают в экстрактор 10 на экстракцию триметилкарбинола водой, подаваемой в количестве 1000,0 г/час (объемное соотношение 1:2,7). Экстракцию осуществляют при температуре 70°С.

Из верхней части экстрактора выводят 74,5 г/час органического слоя (смеси органических продуктов), которые направляют на утилизацию, а из нижней части экстрактора выводят 1222,2 г/час водного раствора, содержащего 17,9% триметилкарбинола и 0,3% прочих органических продуктов, который подают в ректификационную колонну 11 для отгонки триметилкарбинола.

Содержание триметилкарбинола в органическом слое, направляемом на утилизацию, составляет 4,5%.

В ректификационной колонне 11 в качестве дистиллята отбирают 259,0 г/час фракции, содержащей 14,2% воды, 84,4% триметилкарбинола и 1,4% других органических продуктов, а в качестве кубового продукта 963,2 г/час воды, которую рециркулируют на экстракцию.

Из емкости-отстойника 5 отбирют водный слой конденсата продуктов синтеза и в основном рециркулируют в реактор для поддержания объема и кислотности реакционной водной фазы, а балансовое количество водного слоя (262,4 г/час) подают в ректификационную колонну 12 для отгонки легкокипящих органических продуктов. В качестве дистиллята в колонне 12 отбирают 24,5 г/час фракции, содержащей 81,8% триметилкарбинола, 14,1% воды и 4,1% других органических продуктов, а в качестве кубового продукта - воду, которую в количестве 36,8 г/час подают в экстрактор (для компенсации потерь воды), а балансовое количество (201,1 г/час) выводят на очистку перед сбросом в химзагрязненную канализацию.

Фракции триметилкарбинола, отогнанные в колоннах 11 и 12, объединяют и в количестве 283,5 г/час рециркулируют в реактор синтеза 1.

В соответствии с балансом процесса выход изопрена составляет 71,6 мол.% по формальдегиду и 73,9 мол.% по изобутилену.

Процесс осуществляют в непрерывном режиме в течение 240 часов.

Анализ состава потоков в пробах, отобранных после 48, 120 и 240 часов работы, показывает идентичные результаты, что свидетельствует об отсутствии накопления в продуктах синтеза каких-либо побочных продуктов.

Пример 2.

Принципиальная схема установки для осуществления способа согласно предлагаемому изобретению приведена на фиг.2.

Установка включает реактор 1, сепаратор 2, холодильник 3, холодильник-конденсатор 4, емкость-отстойник 5, смеситель 6, емкость-отстойник 7, колонну отгонки изобутилена 8, колонну отгонки изопрена 9, колонну отгонки фракции триметилкарбинола 10, противоточный экстрактор 11, колонну отгонки триметилкарбинола 12, узел гидратации изобутилена в триметилкарбинол УГИ.

В реактор 1, представляющий собой автоклав объемом 5 литров с мешалкой с герметичным электромагнитным приводом и термостатирующей рубашкой, загружают 4,5 литра 7%-ного водного раствора ортофосфорной кислоты, при включенном перемешивании в термостатирующую рубашку подают горячий теплоноситель и нагревают реактор до температуры 160°С.

В реактор подают 4,4-диметил-1,3-диоксан с расходом 406,0 г/час и триметилкарбинол с расходом 1554,0 г/час (в том числе 254,6 г/час прямого, 214,5 г/час в составе рециркулируемой фракции триметилкарбинола и 1084,9 г/час рециклового, полученного в узле гидратации изобутилена УГИ). Выходящий из реактора парожидкостный поток поступает в сепаратор 2, где разделяется на жидкую и паровую фазы.

Пары продуктов реакции и непревращенного сырья, выходящие из сепаратора 2, проходят холодильник-конденсатор 4, где охлаждаются и конденсируются, и поступают в емкость-отстойник 5, где расслаиваются на водный и органический слои.

Давление в реакционном узле (реактор, сепаратор, холодильник, отстойник) поддерживают на уровне 8-9 атм.

Поток жидких продуктов, представляющий собой смесь водного раствора ортофосфорной кислоты и высококипящих побочных продуктов, выводят из сепаратора 2 в количестве 1,6 л/час, охлаждают в холодильнике 3 и подают в смеситель 6 на экстракцию органических продуктов. В качестве экстрагента в смеситель 6 подают органический слой продуктов синтеза из емкости 5. Выходящая из смесителя 6 смесь поступает в емкость-отстойник 7, где расслаивается на органический слой, содержащий проэкстрагированные высококипящие побочные продукты, и водный раствор ортофосфорной кислоты.

Очищенный от высококипящих органических продуктов водный раствор ортофосфорной кислоты из емкости 7 насосом возвращают обратно в реактор 1.

Органический слой из емкости 7 подают на разделение. Сначала в ректификационной колонне 8 выделяют изобутилен в количестве 821,0 г/час, который направляют в узел гидратации УГИ для превращения в триметилкарбинол, затем в ректификационной колонне 9 выделяют изопрен в количестве 353,7 г/час, который подают на очистку, и наконец в ректификационной колонне 10 выделяют фракцию триметилкарбинола, имеющую интервал выкипания 50-88°С, в количестве 238,7 г/час, содержащую 77,5% триметилкарбинола, 12,4% углеводородов C810, 6,1% карбонильных соединений С5Н10О, 2,7% воды и 1,3% прочих органических соединений. Кубовый продукт колонны 10, представляющий собой смесь высококипящих побочных продуктов синтеза, в количестве 88,7 г/час направляют на утилизацию.

Выделенную в колонне 10 фракцию триметилкарбинола направляют в экстрактор 11 для очистки от примесей углеводородов и карбонильных соединений путем экстракции водой, подаваемой в количестве 1000,0 г/час (объемное соотношение 1:3,4) в противоточном режиме. Экстракцию осуществляют при температуре 30°С.

Из верхней части экстрактора 11 выводят органический слой в количестве 49,8 г/час, который направляют на утилизацию. Содержание триметилкарбинола в органическом слое, представляющем собой в основном смесь углеводородов C8-C10 и карбонильных соединений С5Н10О, составляет 3,2%.

Из нижней части экстрактора 11 выводят водный раствор, содержащий 15,4% триметилкарбинола и 0,2% других органических соединений.

Водный раствор триметилкарбинола из экстрактора 11 и водный слой конденсата продуктов синтеза из емкости 5 подают в колонну 12 для отгонки триметилкарбинола.

В качестве дистиллята в колонне 12 отбирают 252,4 г/час фракции, содержащей 85,0% триметилкарбинола, 13,3% воды и 1,7% других органических продуктов, а в качестве кубового продукта воду, которую в необходимом количестве рециркулируют в экстрактор 11, а балансовое количество (432,3 г/час) выводят на очистку перед сбросом в химзагрязненную канализацию.

Фракцию триметилкарбинола, отогнанную в колонне 12, в количестве 252,4 г/час рециркулируют в реактор синтеза 1.

В соответствии с балансом процесса выход изопрена составляет 148,6 мол.% по диметилдиоксану (74,3% от теоретического) и 151,2 мол.% по триметилкарбинолу (75,6% от теоретического).

Процесс осуществляют в непрерывном режиме в течение 200 часов. Анализ состава потоков в пробах, отобранных после 48, 100 и 200 часов работы, показывает идентичные результаты, что свидетельствует об отсутствии накопления в продуктах синтеза каких-либо побочных продуктов.

Пример 3.

Принципиальная схема установки для осуществления способа согласно предлагаемому изобретению приведена на фиг.3.

Установка включает реактор 1, сепаратор 2, холодильник 3, холодильник-конденсатор 4, емкость-отстойник 5, смеситель 6, емкость-отстойник 7, колонну отгонки изобутилена 8, колонну отгонки изопрена 9, колонну отгонки фракции триметилкарбинола 10, противоточный экстрактор 11, противоточный экстрактор 12, колонну отгонки органических продуктов 13.

В реактор 1, представляющий собой трубчатый теплообменник с объемом трубного пространства 5 литров с внешней циркуляционной трубой и циркуляционным насосом, обеспечивающим циркуляцию жидкой фазы не менее 500 литров в час, загружают 4,5 литра 7%-ного водного раствора ортофосфорной кислоты, при включенном циркуляционном насосе в межтрубное пространство подают горячий теплоноситель и нагревают реактор до температуры 165°С.

В реактор подают 4,4-диметил-1,3-диоксан с расходом 400,0 г/час и изобутилен с расходом 1545,0 г/час (в том числе 185,9 г/час прямого, 1359,1 г/час рециклового из экстрактора 12). Выходящий из реактора парожидкостный поток поступает в сепаратор 2, где разделяется на жидкую и паровую фазы.

Пары продуктов реакции и непревращенного сырья, выходящие из сепаратора 2, проходят холодильник-конденсатор 4, где охлаждаются и конденсируются, и поступают в емкость-отстойник 5, где расслаиваются на водный и органический слои.

Давление в реакционном узле (реактор, сепаратор, холодильник, отстойник) поддерживают на уровне 9-10 атм.

Поток жидких продуктов, представляющий собой смесь водного раствора ортофосфорной кислоты и высококипящих побочных продуктов, выводят из сепаратора 2 в количестве 1,6 л/час, охлаждают в холодильнике 3 и подают в смеситель 6 на экстракцию органических продуктов. В качестве экстрагента в смеситель 6 подают органический слой продуктов синтеза из емкости 5. Выходящая из смесителя 6 смесь поступает в емкость-отстойник 7, где расслаивается на органический слой, содержащий проэкстрагированные высококипящие побочные продукты, и водный раствор ортофосфорной кислоты.

Очищенный от высококипящих органических продуктов водный раствор ортофосфорной кислоты из емкости 7 насосом возвращают обратно в реактор 1.

Органический слой из емкости 7 подают на разделение. Сначала в ректификационной колонне 8 выделяют изобутилен в количестве 1359,1 г/час, который направляют в экстрактор 12 для выделения (экстракции) триметилкарбинола, затем в ректификационной колонне 9 выделяют изопрен в количестве 337,2 г/час, который подают на очистку, и наконец в ректификационной колонне 10 выделяют фракцию триметилкарбинола, имеющую интервал выкипания 50-110°С, в количестве 238,4 г/час, содержащую 71,4% триметилкарбинола, 11,2% углеводородов C8-C10, 6,7% карбонильных соединений С5Н10О, 2,6% воды и 8,1% прочих органических соединений. Кубовый продукт колонны 10, представляющий собой смесь побочных продуктов синтеза, в количестве 78,8 г/час направляют на утилизацию.

Выделенную в колонне 10 фракцию триметилкарбинола направляют в экстрактор 11 для очистки от примесей углеводородов и карбонильных соединений путем экстракции водой, подаваемой в количестве 1000,0 г/час (объемное соотношение 1:3) в противоточном режиме. Экстракцию осуществляют при температуре 50°С.

Из верхней части экстрактора 11 выводят органический слой в количестве 62,0 г/час, который направляют на утилизацию. Содержание триметилкарбинола в органическом слое, представляющем собой в основном смесь побочных продуктов, составляет 4,5%. Из нижней части экстрактора 11 выводят водный раствор, содержащий 14,2% триметилкарбинола и 0,5% других органических соединений.

Водный раствор триметилкарбинола из экстрактора 11 подают в экстрактор 12 для выделения триметилкарбинола экстракцией изобутиленом, выделенным в колонне 8. Отбираемый с верха экстрактора 12 органический слой (смесь изобутилена и триметилкарбинола) подают в реактор 1, а отбираемую с низа воду рециркулируют в экстрактор 11.

Водный слой конденсата продуктов синтеза из емкости 5 в основном циркулируют в реактор 1 для поддержания объема и кислотности реакционного водного слоя, а балансовое количество выводят в колонну 13 для отгонки легкокипящих органических продуктов. В качестве дистиллята в колонне 13 отбирают 8,2 г/час фракции, содержащей 85,9% триметилкарбинола, 13,8% воды и 0,3% других органических продуктов, а в качестве кубового продукта воду, которую в необходимом количестве рециркулируют в экстрактор 11 (для компенсации потерь воды), а балансовое количество (107,9 г/час) выводят на очистку перед сбросом в химзагрязненную канализацию.

Фракцию триметилкарбинола, отогнанную в колонне 13, рециркулируют в реактор синтеза 1.

В соответствии с балансом процесса выход изопрена составляет 143,8 мол.% по диметилдиоксану (71,9% от теоретического) и 149,4 мол.% по изобутилену (74,7% от теоретического).

Процесс осуществляют в непрерывном режиме в течение 200 часов. Анализ состава потоков в пробах, отобранных после 48, 100 и 200 часов работы, показывает идентичные результаты, что свидетельствует об отсутствии накопления в потоках каких-либо побочных продуктов.

Пример 4.

Принципиальная схема установки для осуществления способа согласно предлагаемому изобретению приведена на фиг.4.

Установка включает реактор 1, сепаратор 2, холодильник 3, холодильник-конденсатор 4, емкость-отстойник 5, смеситель 6, емкость-отстойник 7, колонну отгонки изобутилена 8, колонну отгонки изопрена 9, колонну отгонки фракции триметилкарбинола 10, противоточный экстрактор 11, противоточный экстрактор 12.

В реактор 1, представляющий собой автоклав объемом 5 литров с мешалкой с герметичным электромагнитным приводом и термостатирующей рубашкой, загружают 4,5 литра 7%-ного водного раствора ортофосфорной кислоты, при включенном перемешивании в термостатирующую рубашку подают горячий теплоноситель и нагревают реактор до температуры 170°С.

В реактор подают 40%-ный формалин с расходом 250,0 г/час и концентрированный изобутилен с расходом 1680,0 г/час (в том числе 182,6 г/час прямого и 1497,4 г/час рециклового с верха экстрактора 12). Выходящий из реактора парожидкостный поток поступает в сепаратор 2, где разделяется на жидкую и паровую фазы.

Пары продуктов реакции и непревращенного сырья, выходящие из сепаратора 2, проходят холодильник-конденсатор 4, где охлаждаются и конденсируются, и поступают в емкость-отстойник 5, где расслаиваются на водный и органический слои.

Давление в реакционном узле (реактор, сепаратор, холодильник, отстойник) поддерживают на уровне 12-14 атм.

Поток жидких продуктов, представляющий собой смесь водного раствора ортофосфорной кислоты и высококипящих побочных продуктов, выводят из сепаратора 2 в количестве 1,4 л/час, охлаждают в холодильнике 3 и подают в смеситель 6 на экстракцию органических продуктов. В качестве экстрагента в смеситель 6 подают органический слой продуктов синтеза из емкости 5. Выходящая из смесителя 6 смесь поступает в емкость-отстойник 7, где расслаивается на органический слой, содержащий проэкстрагированные высококипящие побочные продукты, и водный раствор ортофосфорной кислоты.

Очищенный от высококипящих органических продуктов водный раствор ортофосфорной кислоты из емкости 7 насосом возвращают обратно в реактор 1.

Органический слой из емкости 7 подают на разделение. Сначала в ректификационной колонне 8 выделяют изобутилен в количестве 1497,4 г/час, который направляют в экстрактор 11 для экстракции триметилкарбинола из водных растворов, затем в ректификационной колонне 9 выделяют изопрен в количестве 163,9 г/час, который подают на очистку, и наконец в колонне 10 выделяют фракцию триметилкарбинола, имеющую интервал выкипания 50-110°С, в количестве 185,2 г/час, содержащую 86,4% триметилкарбинола, 3,0% углеводородов C8-C10, 3,7% карбонильных соединений С5Н10О, 2,8% воды и 4,1% прочих органических соединений. Кубовый продукт колонны 10, представляющий собой смесь вышекипящих побочных продуктов синтеза, в количестве 47,1 г/час направляют на утилизацию.

Выделенную в колонне 10 фракцию триметилкарбинола направляют в экстрактор 11 для очистки от примесей углеводородов и карбонильных соединений путем экстракции водой, подаваемой в количестве 500,0 г/час (объемное соотношение 1:2) в противоточном режиме. Экстракцию осуществляют при температуре 65°С.

Из верхней части экстрактора 11 выводят органический слой в количестве 21,7 г/час, который направляют на утилизацию. Содержание триметилкарбинола в органическом слое, представляющем собой в основном смесь побочных продуктов, составляет 7,8%.

Из нижней части экстрактора 11 выводят водный раствор, содержащий 23,8% триметилкарбинола и 0,6% других органических соединений.

Водный раствор триметилкарбинола из экстрактора 11 и балансовое количество водного слоя конденсата продуктов синтеза из емкости 5 подают в экстрактор 12 для выделения триметилкарбинола экстракцией изобутиленом, выделенным в колонне 8. Отбираемый с верха экстрактора 12 органический слой (смесь изобутилена и триметилкарбинола) подают в реактор 1, а отбираемую с низа воду в основном рециркулируют в экстрактор 11, а балансовое количество выводят на очистку.

В соответствии с балансом процесса выход изопрена составляет 72,3 мол.% по формальдегиду и 73,9 мол.% по изобутилену.

Процесс осуществляют в непрерывном режиме в течение 240 часов. Анализ состава потоков в пробах, отобранных после 48, 120 и 240 часов работы, показывает идентичные результаты, что свидетельствует об отсутствии накопления в продуктах синтеза каких-либо побочных продуктов.

Пример 5.

Принципиальная схема установки для осуществления способа согласно предлагаемому изобретению приведена на фиг.5.

Установка включает реакторный блок из двух реакторов 1 и 2, сепаратор 3, холодильник 4, холодильник-конденсатор 5, емкость-отстойник 6, смеситель 7, емкость-отстойник 8, колонну отгонки изобутилена 9, колонну отгонки изопрена 10, колонну отгонки фракции триметилкарбинола 11, противоточный экстрактор 12, противоточный экстрактор 13.

Реакторный блок для осуществления процесса в две ступени контактирования состоит из реактора синтеза предшественников изопрена 1 и реактора разложения предшественников изопрена в изопрен 2.

Реактор 1 представляет собой вертикальный аппарат колонного типа высотой 3 метра и диаметром 0,05 метра, заполненный насадкой и имеющий термостатирующую рубашку. Реактор 2 представляет собой автоклав объемом 5 литров с мешалкой с герметичным электромагнитным приводом и термостатирующей рубашкой.

В реакторный блок загружают 9,0 литров 7%-ного водного раствора ортофосфорной кислоты, в термостатирующие рубашки реакторов подают горячий теплоноситель и нагревают реактор 1 до температуры 110°С, а реактор 2 (при включенном перемешивании) до температуры 160°С.

В реактор 1 подают 40%-ный формалин с расходом 500,0 г/час, водный раствор ортофосфорной кислоты из сепаратора 3 с расходом 3,0 л/час и концентрированный изобутилен с расходом 3360,0 г/час. При пуске установки изобутилен берут со стороны, а в дальнейшем с верха экстрактора 13. Выходящий из реактора 1 поток смешивается с триметилкарбинолом, подаваемым в количестве 471,4 г/час в качестве сырья процесса, и поступает в реактор 2. Выходящий из реактора 2 парожидкостный поток поступает в сепаратор 3, где разделяется на жидкую и паровую фазы.

Пары продуктов реакции и непревращенного сырья, выходящие из сепаратора 3, проходят холодильник-конденсатор 5, где охлаждаются и конденсируются, и поступают в емкость-отстойник 6, где расслаиваются на водный и органический слои.

Давление в реакторе 1 поддерживают на уровне 23-24 атм, а в реакторе 2 - на уровне 12-14 атм.

Поток жидких продуктов, представляющий собой смесь водного раствора ортофосфорной кислоты и высококипящих побочных продуктов, выводят из сепаратора 3, охлаждают в холодильнике 4 и подают в смеситель 7 на экстракцию органических продуктов. В качестве экстрагента в смеситель 7 подают органический слой продуктов синтеза из емкости 6. Выходящая из смесителя 7 смесь поступает в емкость-отстойник 8, где расслаивается на органический слой, содержащий проэкстрагированные высококипящие побочные продукты, и водный раствор ортофосфорной кислоты. Очищенный от высококипящих органических продуктов водный раствор ортофосфорной кислоты из емкости 8 насосом с расходом 3,0 л/час возвращают обратно в реактор 1.

Органический слой из емкости 8 подают на разделение. Сначала в ректификационной колонне 9 выделяют изобутилен в количестве 3360,0 г/час, который подают в экстрактор 13, затем в ректификационной колонне 10 выделяют изопрен в количестве 321,4 г/час, который подают на очистку, и наконец в ректификационной колонне 11 выделяют в количестве 273,1 г/час фракцию триметилкарбинола, имеющую интервал кипения 50-96°С. Кубовый продукт колонны 11 (смесь вышекипящих побочных продуктов) в количестве 54,9 г/час выводят на утилизацию.

Фракцию триметилкарбинола, содержащую 69,6% триметилкарбинола, 22,6% углеводородов C810 и карбонильных соединений общей формулы С5Н10О, 2,5% воды и 5,3% прочих продуктов, подают в экстрактор 12 на экстракцию триметилкарбинола водой, подаваемой в количестве 1,0 л/час (объемное соотношение 1:2,5). Экстракцию осуществляют при температуре 45°С.

Из верхней части экстрактора выводят 83,1 г/час органического слоя (смеси органических продуктов), который направляют на утилизацию, а из нижней части экстрактора выводят 1190,0 г/час водного раствора, содержащего 15,8% триметилкарбинола и 0,2% прочих органических продуктов, который подают в экстрактор 13 для выделения триметилкарбинола экстракцией изобутиленом.

Содержание триметилкарбинола в органическом слое, направляемом на утилизацию, составляет 2,5%.

В экстрактор 13 в противоточном режиме подают водный раствор триметилкарбинола из экстрактора 12, водный слой конденсата продуктов синтеза из емкости 6 и изобутилен, выделенный из продуктов синтеза в колонне 9.

Отбираемый с верха экстрактора 13 органический слой (смесь изобутилена и триметилкарбинола) подают в реактор 1, а отбираемую с низа воду в необходимом количестве рециркулируют в экстрактор 12 и реактор 1, а балансовое количество (512,0 г/час) выводят на очистку перед сбросом в химзагрязненную канализацию.

В соответствии с балансом процесса выход изопрена составляет 70,9 мол.% по формальдегиду и 74,2 мол.% по триметилкарбинолу.

Процесс осуществляют в непрерывном режиме в течение 240 часов. Анализ состава потоков в пробах, отобранных после 48, 120 и 240 часов работы, показывает идентичные результаты, что свидетельствует об отсутствии накопления в продуктах синтеза каких-либо побочных продуктов.

Пример 6 (для сравнения).

Принципиальная схема установки для осуществления способа согласно известным изобретениям приведена на фиг.6.

Установка включает реактор 1, сепаратор 2, холодильник 3, холодильник-конденсатор 4, емкость-отстойник 5, смеситель 6, емкость-отстойник 7, колонну отгонки изобутилена 8, колонну отгонки изопрена 9, колонну отгонки фракции триметилкарбинола 10, колонну отгонки легкокипящих органических продуктов из водного слоя 11.

Процесс осуществляют, как это описано в примере 4, за исключением того, что выделенную в колонне 10 фракцию триметилкарбинола сразу без очистки рециркулируют в реактор синтеза изопрена 1.

После 10 часов работы установки количество отгоняемой фракции триметилкарбинола увеличивается в 1,7 раза (до 309,3 г/час), а содержание в ней триметилкарбинола снижается до 52,7%. Содержание триметилкарбинола в кубовом продукте составляет 0,2%.

Из-за ограниченных возможностей колонны 10 по количеству отгоняемой фракции ее интервал кипения ограничивают до Н.К-82,5°С, а отгоняемое количество - до 350 г/час.

Через 90 часов работы содержание триметилкарбинола в отгоняемой фракции составляет 49,6%, а в кубовом продукте 18,2%. При дальнейшей эксплуатации процесса содержание триметилкарбинола в кубовом продукте продолжает увеличиваться.

В соответствии с балансом процесса через 90 часов работы выход изопрена составляет 68,9 мол.% по формальдегиду и 69,8 мол.% по изобутилену.

Пример 7 (для сравнения).

Процесс осуществляют, как это описано в примере 6, за исключением того, что в качестве источника формальдегида используют 4,4-диметил-1,3-диоксан и подачи сырья соответствуют примеру 3.

При осуществлении процесса, как и в примере 6, наблюдается увеличение количества отгоняемой фракции триметилкарбинола и снижение в ней концентрации триметилкарбинола, а также нарастание концентрации триметилкарбинола в кубовом продукте колонны К-10 и соответственно увеличение его потерь.

В соответствии с балансом процесса через 90 часов работы выход изопрена составляет 138,2 мол.% по диметилдиоксану (69,1% от теоретического) и 140,8 мол. % по изобутилену (70,4% от теоретического).

1. Способ получения изопрена путем жидкофазного взаимодействия формальдегида и изобутилена или веществ, являющихся их источниками, например 4,4-диметил-1,3-диоксана и триметилкарбинола, в присутствии водного раствора кислотного катализатора, осуществляемый при повышенной температуре и давлении с получением продуктов реакции и балансового количества воды в виде парового потока, с последующим охлаждением, конденсацией и разделением на водный и органический слои, с переработкой органического слоя, включающей выделение рециклового изобутилена, целевого изопрена, рециклового триметилкарбинола и высококипящего остатка, с переработкой водного слоя, включающей выделение органических продуктов, в том числе триметилкарбинола, с выводом жидкого потока водного раствора катализатора на экстракцию, с последующим возвратом в зону синтеза, при этом выделение триметилкарбинола из продуктов синтеза осуществляют путем экстракции водой с последующим выделением из полученных водных растворов.

2. Способ по п.1, отличающийся тем, что экстракцию триметилкарбинола осуществляют из органического слоя после отгонки изобутилена и изопрена или из фракций триметилкарбинола с температурами кипения в интервале 50-110°С, выделенных из продуктов синтеза ректификацией.

3. Способ по п.1 или 2, отличающийся тем, что экстракцию триметилкарбинола осуществляют при температуре 30-70°С и объемном соотношении воды и фракции триметилкарбинола 2-5.

4. Способ по п.1 или 2, отличающийся тем, что выделение триметилкарбинола из полученных водных растворов осуществляют путем отгонки или экстракции изобутиленом или изобутиленсодержащими фракциями.

5. Способ по п.1 или 2, отличающийся тем, что выделение триметилкарбинола из водного экстракта и водного слоя конденсата продуктов синтеза осуществляют совместно.



 

Похожие патенты:

Изобретение относится к способу получения пара-ксилола избирательным метилированием толуола, включающему взаимодействие смеси реагентов, содержащей толуол, метанол и добавленную воду, с катализатором на основе модифицированного оксидом цеолита ZSM-5 в проточном реакторе и со временем взаимодействия между смесью реагентов и катализатором меньшим, чем 1 секунда, при этом способ осуществляют при температуре от 250 до 500°С.

Изобретение относится к способу получения изопрена. .

Изобретение относится к способу получения изопрена путем жидкофазного взаимодействия формальдегида и изобутилена или веществ, являющихся их источниками, например 4,4-диметил-1,3-диоксана и триметилкарбинола, в присутствии водного раствора кислотного катализатора, осуществляемому при повышенной температуре и давлении с получением продуктов реакции и балансового количества воды в виде парового потока, с последующим охлаждением, конденсацией и разделением на водный и органический слои, с переработкой органического слоя, включающей выделение рециклового изобутилена, целевого изопрена, рецикловых триметилкарбинола и предшественников изопрена, фракции метилдигидропирана, фракции углеводородов C8-С 10 и карбонильных соединений С5Н 10О и высококипящего остатка, с переработкой водного слоя, включающей выделение органических продуктов, с выводом жидкого потока водного раствора катализатора на экстракцию, с последующим возвратом в зону синтеза, при этом выделение триметилкарбинола, метилдигидропирана и предшественников изопрена, фракции углеводородов C8-С10 и карбонильных соединений С5Н10О осуществляют путем азеотропной ректификации с добавлением воды в количестве, необходимом для образования азеотропа, с отгоняемым в колонне продуктом.
Изобретение относится к способу переработки метилдигидропирана и/или побочных продуктов синтеза изопрена из изобутилена и формальдегида путем термокаталитического разложения их над алюмосиликатсодержащим катализатором с предварительным нагревом (или без него) исходного сырья в присутствии водяного пара с последующей конденсацией полученного контактного газа с образованием водного и масляного слоев и выделением из последних продуктов реакции: изопрена, изобутилена и формальдегида, характеризующемуся тем, что в контактный газ добавляют изопрен при температуре 35-90°С при массовом соотношении изопрен:контактный газ, равном (0,2÷5):1.

Изобретение относится к способу получения изопрена из изобутилена, содержащегося в С4-фракции углеводородов, и формальдегида, осуществляемому в присутствии воды и кислотного катализатора и включающего стадию синтеза полупродуктов - предшественников изопрена с выводом их в составе органического и водного потоков и отгонкой от органического потока углеводородов С 4 и стадию разложения полученных полупродуктов с выводом потока, содержащего изопрен, и его разделением.

Изобретение относится к способу получения изопрена из изобутилена или изобутиленсодержащей фракции углеводородов и/или триметилкарбинола и формальдегида и осуществляется как минимум в двух реакционных зонах при повышенной температуре и давлении в присутствии кислотного катализатора, включающего производное фосфоновой кислоты, и характеризуется тем, что в первой реакционной зоне температура реакции составляет 80-100°С, мольное соотношение формальдегида к изобутилену и/или триметилкарбинолу составляет 1:3÷5, а в качестве катализатора используют катализатор на основе минеральной и/или органической кислоты, дополнительно содержащий соединение тетраметилпиперидина общей формулы где R1 - O или H; R 2 - H, или О, или ОН, или смесь таких соединений при массовом соотношении минеральной и/или органической кислоты, производного фосфоновой кислоты и соединения тетраметилпиперидина или смеси таких соединений, составляющем 1:0,01÷0,2:0,01÷0,2.

Изобретение относится к области органической химии, в частности, к способу получения разветвленных насыщенных углеводородов, которые могут быть использованы для повышения октанового числа.

Изобретение относится к способу получения 1,2-диалкил-1,2-диэтилциклопропанов общей формулы 1, где R1 и R2 соответственно равны n-Pr, n-Pr; n-Bu, n-Bu; Me, n-C5H11, которые могут быть использованы в качестве основной компоненты высокоэнергетических горючих, для получения противовирусных лекарственных препаратов, пестицидов, низкомолекулярных биорегуляторов.

Изобретение относится к способу получения 1,2-диалкил-1Z,3-бутадиенов общей формулы I, где R=n-Pr, n-Bu, которые могут быть использованы в процессах полимеризации, диенового синтеза, а также в качестве полупродуктов в лакокрасочной промышленности.

Изобретение относится к способу получения изопрена. .

Изобретение относится к способу получения изопрена путем жидкофазного взаимодействия формальдегида и изобутилена или веществ, являющихся их источниками, например 4,4-диметил-1,3-диоксана и триметилкарбинола, в присутствии водного раствора кислотного катализатора, осуществляемому при повышенной температуре и давлении с получением продуктов реакции и балансового количества воды в виде парового потока, с последующим охлаждением, конденсацией и разделением на водный и органический слои, с переработкой органического слоя, включающей выделение рециклового изобутилена, целевого изопрена, рецикловых триметилкарбинола и предшественников изопрена, фракции метилдигидропирана, фракции углеводородов C8-С 10 и карбонильных соединений С5Н 10О и высококипящего остатка, с переработкой водного слоя, включающей выделение органических продуктов, с выводом жидкого потока водного раствора катализатора на экстракцию, с последующим возвратом в зону синтеза, при этом выделение триметилкарбинола, метилдигидропирана и предшественников изопрена, фракции углеводородов C8-С10 и карбонильных соединений С5Н10О осуществляют путем азеотропной ректификации с добавлением воды в количестве, необходимом для образования азеотропа, с отгоняемым в колонне продуктом.
Изобретение относится к способу переработки метилдигидропирана и/или побочных продуктов синтеза изопрена из изобутилена и формальдегида путем термокаталитического разложения их над алюмосиликатсодержащим катализатором с предварительным нагревом (или без него) исходного сырья в присутствии водяного пара с последующей конденсацией полученного контактного газа с образованием водного и масляного слоев и выделением из последних продуктов реакции: изопрена, изобутилена и формальдегида, характеризующемуся тем, что в контактный газ добавляют изопрен при температуре 35-90°С при массовом соотношении изопрен:контактный газ, равном (0,2÷5):1.

Изобретение относится к способу получения изопрена из изобутилена, содержащегося в С4-фракции углеводородов, и формальдегида, осуществляемому в присутствии воды и кислотного катализатора и включающего стадию синтеза полупродуктов - предшественников изопрена с выводом их в составе органического и водного потоков и отгонкой от органического потока углеводородов С 4 и стадию разложения полученных полупродуктов с выводом потока, содержащего изопрен, и его разделением.

Изобретение относится к способу получения изопрена из изобутилена или изобутиленсодержащей фракции углеводородов и/или триметилкарбинола и формальдегида и осуществляется как минимум в двух реакционных зонах при повышенной температуре и давлении в присутствии кислотного катализатора, включающего производное фосфоновой кислоты, и характеризуется тем, что в первой реакционной зоне температура реакции составляет 80-100°С, мольное соотношение формальдегида к изобутилену и/или триметилкарбинолу составляет 1:3÷5, а в качестве катализатора используют катализатор на основе минеральной и/или органической кислоты, дополнительно содержащий соединение тетраметилпиперидина общей формулы где R1 - O или H; R 2 - H, или О, или ОН, или смесь таких соединений при массовом соотношении минеральной и/или органической кислоты, производного фосфоновой кислоты и соединения тетраметилпиперидина или смеси таких соединений, составляющем 1:0,01÷0,2:0,01÷0,2.

Изобретение относится к способу получения 2-метил-2-бутена из изопентана, включающему газофазное дегидрирование изопентана в зоне дегидрирования, извлечение из контактного газа С 5-фракции, содержащей преимущественно изопентан, трет.пентены, примеси изопрена и других углеводородов, и получение из нее потока, содержащего преимущественно 2-метил-2-бутен, с использованием жидкофазной каталитической изомеризации в С5 -фракции 2-метил-1-бутена в 2-метил-2-бутен и ректификации, характеризующемуся тем, что указанную С5-фракцию, возможно дополнительно содержащую пиперилены и 2-пентены, непосредственно или после отгонки от большей части 2-метил-2-бутена подвергают жидкофазной гидроизомеризации в присутствии твердого катализатора, содержащего металл(ы) VIII группы периодической системы Д.И.Менделеева, способный(е) одновременно катализировать гидрирование пентадиенов, изопрена и возможно пипериленов, и позиционной изомеризации трет.пентенов, предпочтительно с последующей дополнительной изомеризацией 2-метил-1-бутена в 2-метил-2-бутен на сульфокатионитном катализаторе, и ректификации с выводом в качестве дистиллята потока преимущественно изопентана, содержащего не более 1,0 мас.%, предпочтительно не более 0,2 мас.% пентадиена(ов), который в основном рециркулируют в зону дегидрирования, и выводом из нижней части ректификации потока преимущественно 2-метил-2-бутена с примесью н.пентана и возможно 2-пентенов.

Изобретение относится к способу получения изопрена в одну стадию и характеризуется тем, что включает непрерывную или периодическую подачу изобутилена и/или трет-бутанола, формальдегида и воды в кислотный водный раствор и взаимодействие реакционной смеси при отгонке смеси, содержащей получаемый изопрен, воду, непрореагировавшие исходные материалы и другие низкокипящие компоненты, из указанной реакционной смеси за пределы реакционной системы, в котором указанная реакция проводится при регулировании концентрации высококипящих побочных продуктов, которые получаются и накапливаются в указанной реакционной смеси, с попаданием в интервал 0,5-40 мас.%.
Изобретение относится к способу получения изопрена дегидрированием изоамиленовой фракции в присутствии перегретого водяного пара и катализатора на основе оксида железа и характеризуется тем, что в качестве катализатора используют катализатор, имеющий насыпную плотность не менее 1.0 г/см3 и не более 2.00 г/см3, и кажущуюся плотность не менее 2.0 г/см3 и не более 3.5 г/см 3, и следующий состав, мас.%: Соединение калия5-30 Оксид магния0,5-10 Оксид церия (4)5-20 Карбонат кальция 1-10Оксид молибдена 0,5-5Оксид железа (3) остальноеДанный способ позволяет повысить селективность процесса дегидрирования, а также увеличить активность и межрегенерационный цикл работы катализатора.

Изобретение относится к области получения изопрена (2-метил-1,3-бутадиена). .

Изобретение относится к нефтехимической промышленности, в частности к процессу получения изопрена, используемого в качестве мономера в производстве синтетического каучука.

Изобретение относится к способу получения изопрена путем жидкофазного взаимодействия триметилкарбинола или его водных растворов и формальдегида или веществ, являющихся его источниками, например 4,4-диметил-1,3-диоксана, в присутствии водного раствора кислотного катализатора, осуществляемому при повышенной температуре и давлении в одну или несколько ступеней контактирования, с использованием на последней ступени контактирования реакционно-разделительного аппарата, включающего зону подвода тепла, реакционную зону и зону сепарации, с отбором продуктов реакции и воды из зоны сепарации в виде парового потока, с последующим охлаждением, конденсацией и разделением, с выводом жидкого потока водного раствора катализатора на экстракцию, с последующим возвратом в зону нагрева, и характеризующемуся тем, что давление в реакционной зоне поддерживают выше, чем давление насыщенных паров воды, соответствующее температуре в реакционной зоне, а давление в зоне сепарации выдерживают ниже, чем давление насыщенных паров воды, соответствующее температуре в реакционной зоне, осуществляя дросселирование реакционного потока при переходе из реакционной зоны в зону сепарации
Наверх