Способ очистки выхлопных газов газотурбинных установок от вредных примесей и устройство для его осуществления

Изобретение относится к технике очистки выхлопных газов и может применяться на газоперекачивающих станциях и электростанциях. На первой стадии выхлопной газ подают в реакционную камеру 1 для очистки от СО и углеводородов путем воздействия на поток электромагнитным излучением плазмы стриммерного разряда. На второй стадии газ очищают от NOx воздействием распыленного водного раствора карбамида. Источники для создания плазмы стриммерного разряда 3 устанавливают в газоходе 2 непосредственно за системой выхлопа двигателя. Форсунки подачи и распыла водного раствора карбамида размещены за ними по ходу газового потока. Предложенное изобретение позволяет повысить степень очистки газов и улучшить условия эксплуатации. 2 н. и 2 з.п. ф-лы, 5 ил.

 

Изобретение относится к способам и устройствам для очистки выхлопных газов газотурбинных установок от СО, углеводородов, NOx и найдет применение на газоперекачивающих станциях и электростанциях, использующих в качестве привода газотурбинные двигатели.

Известен способ очистки газов от вредных примесей облучением потока газов электронным пучком с использованием в качестве источника электромагнитного излучения плазмы стриммерного разряда (см., например, патент RU № 2184601, кл. В01Д 53/32, 10.07.2002).

Основным недостатком известного способа является невозможность одновременной очистки газов от всех примесей (СО, углеводородов, NOx).

Известно устройство, содержащее реакционную камеру с источниками электронов (см., например, патент RU № 2184601, кл. В01Д 53/32, 10.07.2002).

Недостатком известного способа и устройства является также невозможность одновременной очистки газов от всех примесей и ненадежность работы при высоких температурах, ухудшаются условия работы обслуживающего персонала.

Поставленная задача - повышение степени очистки газов от всех примесей в пределах газовода, улучшение условий эксплуатации.

Поставленная цель достигается за счет того, что поток выхлопных газов облучают электронным пучком и обрабатывают раствором химического элемента, при этом процесс осуществляют в две стадии, в первой стадии газ очищают от СО и углеводородов по радикально-цепному механизму путем фотохимической инициации газовой смеси с использованием в качестве источника электромагнитного излучения плазмы стриммерного разряда, а во второй стадии газ очищают от NOx подачей в активизированную смесь, по всему сечению газовода, распыленного водного раствора карбамида. Способ очистки газов обеспечивается устройством, включающим реакционную камеру газовода с источником электронов и форсунки подачи водного раствора химического реагента, при этом источники создания плазмы стриммерного разряда установлены в газоходе непосредственно за системой выхлопа газотурбинного двигателя и выполнены в виде чашечной пластины - катода из металлокерамики, закрепленной на изолирующей стойке, внутри которой размещен стержень-проводник, а аноды закреплены на стойках элементов конструкции стенки газохода, при этом форсунки подачи и распыла водного раствора карбамида размещены за ними по ходу газового патока. Крепление стержней-проводников и форсунок снабжено теплоизоляцией и элементами компенсации температурных изменений их длины.

Способ очистки газов газотурбинных установок от вредных примесей и устройство для осуществления этого способа поясняются чертежами,

где

на фиг.1 показан общий вид устройства на участке газовода;

на фиг.2 - поперечный разрез по газоводу и излучателям;

на фиг.3 - поперечный разрез по газоводу и по форсункам подачи раствора;

на фиг.4 - элемент «В», штанга подачи распыла раствора;

на фиг.5 - элемент «Г», электромагнитный излучатель.

Устройство (фиг.1) включает реакционную камеру 1 в газоводе 2 с источником электронов 3 и штанги 4 подачи раствора. Источники электронов 3 (фиг.2; 5) установлены в газоходе 2 непосредственно за системой выхлопа газотурбинного двигателя и выполнены в виде чашечной пластины - катода 5, выполненной из металлокерамики, закрепленной на изолирующей стойке 6, внутри которой размещен стержень-проводник 7, а аноды 8 закреплены на стойках 9 крышек 10 стенки 11 газохода 2. Стержень-проводник 7 соединен проводником 12 с генератором 13. Проводник 12 размещен в масле, залитом в резервуаре 14 в виде гибкого рукава, например гофрированного шланга, соединенного с крышкой 15 на стенке 11 газовода 2 и на днище генератора 13. Штанги 4 (фиг.3 и 4) подачи распыла водного раствора карбамида размещены за источниками электронов 3 (по ходу газового потока, см. фиг.1) и выполнены в виде трубопровода 16, на одном конце которого установлена форсунка 17 для распыла раствора, а второй конец закреплен на крышке 18 с закрепленной на ней трубой 19 подвода раствора. Штанга 4 закрыта кожухом 20, внутри которого имеется теплоизолирующая набивка 21. Крышка 18 закреплена на крышке 22, соединенной с патрубком 23, закрепленным на стенке 24 газовода 2. В днище 25 патрубка 23 имеется отверстие для прохода кожуха 20 со свободой перемещения в нем при температурных удлинениях кожуха 20.

Во время работы устройства по очистке газов газотурбинной установки от вредных примесей (СО, углеводородов, NOx) очистку производят в две стадии в процессе перемещения газа по газоводу 2 от системы выхлопа газотурбинного двигателя до выброса в атмосферу. В первой стадии газ очищают в реакционной камере 1 от СО и углеводородов путем воздействия на поток газа электромагнитным излучением плазмы стриммерного разряда в зоне катодов 5 и анодов 8, питающихся от генератора 13. Во второй стадии активизированный газ очищают от NOx путем воздействия на него водным раствором карбамида (NH2CONH2) в зоне подачи его форсунками 17 в распыленном виде.

Карбамид (NH2CONH2) в условиях выхлопного тракта газотурбинной установки (Тг>400°С) под воздействием температуры и излучения разлагается с образованием радикалов NH2, которые реагируют с NOx и О3. Продуктами реакции являются N2 и Н2О. Возможные остатки окиси углерода после первой стадии окисляются озоном до СО2.

Способ и макет устройства изготовлены и опробованы в лабораторных условиях, подтверждено достижение поставленной задачи.

Планируется проверка способа и устройства в составе газотурбинной установки.

Опыт эксплуатации аналогичных способов и устройств дает основание утверждать о возможности промышленного и эксплутационного использования способа и устройства.

Примеры осуществления способа очистки газов газотурбинных установок от вредных примесей.

Пример 1.

Использовался газогорелочный блок ГГБ-225 конструкции и изготовления СНТК им. Н.Д.Кузнецова (г. Самара). Режим работы - мощность блока 90 кВ. Топливо - пропан. Измеренные вредные примеси на выходе из блока: NOx - 100 мг/м3, СО - 37 мг/м3. Выхлопные газы пропускались через камеру электромагнитного излучения плазмы стриммерного разряда ГВИ-150, с частотой 100 Гц, мощностью 150 кВ. За камерой были установлены форсунки для впрыскивания водного раствора карбамида с расходом 1 г карбамида на 2 г NOx. По результатам замера состава продуктов сгорания была зафиксирована очистка выхлопного газа от СО и углеводородов на 80% и от NOx на 90%.

Пример 2.

В качестве источника продуктов сгорания использовался газовый лучистый обогреватель ГОЛ-40 конструкции и изготовления упомянутого предприятия; режим работы - мощность блока 45 кB. Измеренные вредные выбросы на выходе из блока: NOx - 107 мг/м3, СО - 94 мг/м3. После обработки выхлопных газов, как и в предыдущем примере, получена очистка от NOx - 80...87% и от СО и углеводородов на 85...90%.

1. Способ очистки газов газотурбинных установок от вредных примесей, включающий облучение потока газов электронным пучком и использование в качестве источника электромагнитного излучения плазмы стриммерного разряда, отличающийся тем, что процесс осуществляется в две стадии, при этом в первой стадии газ очищают от СО и углеводородов по радикально-цепному механизму путем фотохимической инициации газовой смеси, а во второй стадии газ очищают от NOx подачей в активизированную смесь по всему сечению газовода распыленного водного раствора карбамида.

2. Устройство для осуществления способа по п.1, содержащее реакционную камеру с источниками для создания плазмы стриммерного разряда, отличающееся тем, что они установлены в газоходе непосредственно за системой выхлопа газотурбинного двигателя и выполнены в виде чашечной пластины-катода из металлокерамики, закрепленной на изолирующей стойке, внутри которой размещен стержень-проводник, анодов, закрепленных на стойках крышек стенки газохода, а за источниками для создания плазмы стриммерного разряда по ходу газового потока размещены форсунки подачи и распыла водного раствора карбамида.

3. Устройство по п.2, отличающееся тем, что крепление стержней-проводников и форсунок снабжено теплоизоляцией и элементами компенсации температурных изменений их длины.

4. Устройство по п.2, отличающееся тем, что проводник, соединяющий генератор высоковольтных импульсов источников для создания плазмы стриммерного разряда со стержнем-проводником, снабжен компенсатором температурных изменений длины, например, гибким рукавом, заполненным маслом.



 

Похожие патенты:

Изобретение относится к области очистки газов, в частности для фильтрации потока от содержащихся в нем аэрозольных частиц, и может быть использовано в различных отраслях промышленности и энергетики.

Изобретение относится к аппарату и способу обработки побочного газа, отходящего из системы обработки отходов (100), использующим плазменную горелку. .

Изобретение относится к каталитической очистке газовых выбросов дизельных двигателей и промышленных предприятий, а именно к способу и устройству очистки выхлопных газов дизельных двигателей и выбросов промышленных предприятий от органических соединений и продуктов их разложения, оксидов азота, сажи, оксида углерода, озона.

Изобретение относится к способу и устройству очистки выбросов предприятий в атмосферу от загрязняющих веществ. .

Изобретение относится к газовой промышленности и может использоваться при подготовке природного газа к транспортировке по трубопроводу. .

Изобретение относится к способам очистки газовых выбросов от органических соединений, в частности от полициклических ароматических углеводородов. .

Изобретение относится к способу и плазмохимическому реактору для переработки природных горючих газов, дымовых газов, выхлопных газов двигателей внутреннего сгорания от содержащихся в них нежелательных химических соединений, в частности СО и Н2S, NО2, СО2.

Изобретение относится к способам очистки газов от неорганических и органических примесей и может быть использовано в металлургической и машиностроительной промышленности для очистки газов, отходящих от плавильных печей, сварочных установок, лакокрасочных камер и т.п., а также в теплоэнергетической, химической и других областях промышленности.

Изобретение относится к оборудованию для контроля загрязнений. .

Изобретение относится к аппаратам для разделения и очистки газов от гомогенных примесей и может найти применение в различных отраслях промышленности, а также в экологических процессах газоочистки.

Изобретение относится к средствам для очистки газовых сред и может быть использовано для очистки технологического воздуха различных производственных процессов, выхлопных газов транспортных средств, воздуха в бытовых помещениях, медицинских учреждениях и т.п

Изобретение относится к области неорганической химии и может быть использовано при очистке газов и стерилизации воздуха
Изобретение относится к способу очистки, предназначенному для удаления из материалов кислорода

Изобретение относится к области химической технологии очистки углеводородного газа (попутного нефтяного, природного, пропан-бутановой смеси и др.) от сероводорода и может быть использовано в нефтегазовой, химической и энергетической промышленности

Изобретение относится к области очистки газов и может быть использовано в различных отраслях промышленности и энергетики для очистки газов от содержащихся в них аэрозольных частиц

Изобретение относится к приводимому в действие электричеством узлу отделения кислорода, включающему в себя по меньшей мере один трубчатый мембранный элемент, имеющий слой анода, слой катода, слой электролита, расположенный между слоем анода и слоем катода, и два слоя токоприемника, расположенные смежными с и в контакте со слоем анода и слоем катода и размещенные на внутренней стороне и наружной стороне упомянутого по меньшей мере одного трубчатого мембранного элемента; комплект проводников, соединенных с одним из двух слоев токоприемника в двух центральных разнесенных местоположениях упомянутого по меньшей мере одного трубчатого мембранного элемента и с другим из двух слоев токоприемника по меньшей мере в противоположных концевых местоположениях упомянутого по меньшей мере одного трубчатого мембранного элемента, разнесенных наружу от упомянутых двух центральных разнесенных местоположений, так что источник питания способен прикладывать электрический потенциал через набор проводников между двумя центральными разнесенными и по меньшей мере двумя противоположными концевыми местоположениями, а вызванный приложенным электрическим потенциалом электрический ток, текущий через упомянутый по меньшей мере один трубчатый мембранный элемент, делится на две части, текущие между двумя центральными разнесенными и противоположными концевыми местоположениями

Изобретение относится к области очистки газов и может быть использовано в различных отраслях промышленности и энергетики для отделения от увлажненного газового потока содержащихся в нем аэрозольных частиц, в том числе и конденсируемой составляющей паров газового потока (конденсата). Фильтр очистки газового потока содержит осадительный и коронирующий электроды. Коронирующий электрод соединен с высоковольтным источником питания. Осадительный электрод заземлен. Коронирующий электрод коаксиально электрически изолированно установлен с зазором относительно осадительного электрода. Фильтр снабжен дополнительным пористым осадительным электродом, установленным в струе выходящего из осадительного электрода очищаемого газового потока. Фильтр содержит ряд дополнительных признаков, улучшающих его характеристики. Изобретение позволяет использовать энергию струи очищаемого газового потока для приближения его при очистке к дополнительному осадительному электроду и продвижения очищаемого газового потока по порам дополнительного осадительного электрода. В процессе движения очищаемого газового потока по порам дополнительного осадительного электрода электрически заряженные капли и аэрозольные частицы захватываются заземленной поверхностью дополнительного осадительного электрода, а очищенный газ выталкивается энергией струи наружу. Изобретение позволяет сократить габаритные размеры конструкции фильтра, особенно для очистки газовых потоков, движущихся с большой скоростью, например, выхлопных газов автомобиля. 1 з.п. ф-лы, 3 ил.

Изобретение относится к технологиям малотоннажной утилизации непромышленных газов в газовой промышленности. Изобретение касается малотоннажной установки по утилизации ресурсов малых месторождений природного газа, состоящей из последовательно соединенных очистительного модуля, теплообменника предварительного нагрева, теплообменника-рекуператора для тепловой обработки сырья, реактора плазмохимического синтеза для образования водородно-сажевой смеси, теплообменника-рекуператора для закалки, теплообменника-охладителя для охлаждения смеси, циклона для выделения и подачи в рукавный фильтр для сбора с последующей подачей в гранулятор и конденсатор, гранулятора для гранулирования частиц сажи при увлажнении водой из конденсатора и последующей подачи в сушильный барабан, конденсатора для подачи воды в гранулятор и конденсации воды с подачей водородной смеси в компрессор, сушильного барабана для осушки и выделения, компрессора для сжатия водорода и подачи в мембранный блок для обогащения и последующего выделения. Технический результат - обеспечение рационального использования сжигаемого газового сырья на месторождении с получением товарной газохимической продукции: технического углерода и водорода. 2 ил.

Изобретение относится к пищевой и биоэнергетической промышленностям. Способ плазмохимической очистки газов от органических загрязнений путем пропускания указанных газов через область объемного высоковольтного электрического разряда, при этом плазменную обработку газа производят при давлении ниже атмосферного, а в область электрического разряда дополнительно вводят окислитель и гранулированный катализатор. Установка для плазмохимической очистки газа от органических загрязнений содержит газоразрядную камеру 1 с входным патрубком 2 для ввода очищаемого газа и выходным патрубком 3 для вывода очищенного газа. Отличие: Установка дополнительно содержит подключенный к газоразрядной камере вакуумный насос 4, помещенный внутри указанной камеры 1 в области разряда катализатор 9 и устройство 8 для распределенного подвода к нему окислителя. Достигаемым техническим результатом изобретения является уменьшение энергозатрат и повышение эффективности плазмохимической очистки газов от органических загрязнений в присутствии водяных паров с возможностью изменения режимов процесса для его оптимизации. 2 н.з. и 5 з.п. ф-лы, 5 ил.
Наверх