Халькогенидное стекло

Изобретение относится к составам халькогенидных стекол, используемых в приборостроении. Халькогенидное стекло включает, мас.%: GeS2 40-42; NaCl 28-32; Ga2S3 10-12; As2S3 8-10; As2Te3 8-10. Твердое состояние халькогенидного стекла сохраняется до температуры 430-440°С. Техническая задача изобретения - повышение термической устойчивости стекла. 1 табл.

 

Изобретение относится к составам халькогенидных стекол, используемых в приборостроении.

Известно халькогенидное стекло, содержащее, мас.%: GeS2 55-75; NaCl 10-20; Ga2S3 15-25 [1].

Задачей изобретения является повышение термической устойчивости халькогенидного стекла.

Технический результат достигается тем, что халькогенидное стекло, включающее GeS2, NaCl, Ga2S3, дополнительно содержит As2S3 и As2Te3 при следующем соотношении компонентов, мас.%: GeS2 40-42; NaCl 28-32; Ga2S3 10-12; As2S3 8-10; As2Те3 8-10.

В таблице приведены составы стекла.

Таблица
КомпонентыСодержание, мас.% в составах
123
GeS2404142
NaCl283032
Ga2S3121110
As2S31098
As2Те31098

Для всех приведенных в таблице составов твердое состояние халькогенидного стекла сохраняется до температуры 430-440°С.

Компоненты дозируют в требуемых количествах, помещают в емкость, из которой откачивают воздух, и запаивают. Варку стекла проводят в электропечи при температуре 1200-1230°С.

Источники информации

1. А.с. №1135726 СССР, 1985.

Халькогенидное стекло, включающее GeS2, NaCl, Ga2S3, отличающееся тем, что дополнительно содержит AS2S3 и As2Te3 при следующем соотношении компонентов, мас.%: GeS2 40-42; NaCl 28-32; Ga2S3 10-12; As2S3 8-10; As2Te3 8-10.



 

Похожие патенты:
Изобретение относится к составам халькогенидных стекол, используемых в приборостроении. .
Изобретение относится к составам халькогенидных стекол, используемых в микроэлектронике. .
Изобретение относится к составам халькогенидных стекол, используемых для защиты и изоляции полупроводниковых приборов и интегральных схем. .

Изобретение относится к оптическим фторидным стеклам, прозрачным в ИК-области спектра, используемым в качестве перспективных материалов для ИК-оптики: ИК-пропускающие сердцевины оптических волокон, элементы оптических устройств, рабочих тел лазеров в различных оптических усилителях, планарных волноводах и в светотрансформирующих устройствах.

Изобретение относится к теллургалогенидным стеклам, прозрачным в инфракрасной области спектра. .
Изобретение относится к волоконной оптике и касается разработки способа получения сульфидно-мышьяковых стекол для сердцевины и оболочки одномодовых и малоапертурных многомодовых световодов, используемых в оптике и приборах для ближнего и среднего ИК-диапазона.

Изобретение относится к составам халькогенидных стекол, используемых преимущественно в оптоэлектронике. .
Изобретение относится к области химии и может быть использовано для синтеза стекол GexS1-x(X= 0,1-0,5) особой чистоты. .
Изобретение относится к способам синтеза стекол AsxS1-x(х = 0,10-0,45), AsxSe1-x (х = 0-0,60) и может быть использовано в различных областях электронной техники, волоконной оптики, электронографии.

Изобретение относится к галогеносодержащим халькогенидным стеклам, прозрачным в инфракрасной области спектра. .
Изобретение относится к волоконной оптике и касается разработки способа получения халькогенидных стекол системы As-S с низким содержанием примеси кислорода в виде гидроксильных групп, молекулярной воды, диоксида углерода и может быть использовано для получения волоконных световодов, применяемых в оптике и приборах для ближнего и среднего ИК-диапазона
Изобретение относится к материалам для волоконной оптики и касается разработки способа получения особо чистых тугоплавких халькойодидных стекол, которые могут быть использованы для изготовления волоконных световодов, применяемых в оптике и оптоэлектронных приборах для ближнего и среднего ИК-диапазона

Изобретение относится к фторидным оптическим стеклам, обладающим способностью к люминесценции в диапазоне 1000-1700 нм при возбуждении излучением с длинами волн в пределах 400-1100 нм

Изобретение относится к технологии получения фторидных хлор- и бромсодержащих стекол с широким ИК-диапазоном пропускания и повышенной прозрачностью. Способ получения фторидных стекол включает плавление шихты из исходных компонентов в инертной атмосфере в платиновом или углеродном тигле с последующим выливанием расплава в металлическую литьевую форму и охлаждение расплава в форме. В шихту из смеси галогенидов, выбранных из ряда: HfF4; BaF2; BaCl2; LaF3; AlF3; InF3; NaF; NaBr дополнительно вводят 2÷3 мол.% предварительно высушенного при температуре до 100°C гидрофторида бария. Шихту загружают в тигель, который помещают в ампулу из кварцевого стекла, нагревают в токе инертного газа до температуры разложения гидрофторида и выдерживают в течение 20÷40 мин. Затем тигель накрывают графитовой пробкой, а зазор между пробкой и стенкой тигля заполняют порошком стекла того же состава, после чего в верхней части ампулы размещают металлическую литьевую форму. Ампулу герметизируют, промывают инертным газом и помещают в двухзонную печь сопротивления. Тигель нагревают до температуры на 250÷350°C выше температуры плавления шихты и выдерживают в течение 30÷50 минут, после чего температуру снижают на 120÷160°C, а форму, находящуюся в верхней части ампулы, нагревают во второй зоне печи сопротивления до температуры на 35÷45°C ниже температуры стеклования. Затем расплав охлаждают, а полученное стекло извлекают из формы. Предложенный способ позволяет получить фторидные хлор- или бромсодержащие стекла с малой концентрацией кислородсодержащих примесей и исключить испарения тяжелых галогенов. и 3 з.п. ф-лы, 1 табл., 1 ил., 3 пр.

Изобретение относится к химии, а именно к производству высокочистых стекол, которые могут быть использованы для изготовления оптических элементов, световодов и широкозонных полупроводников, применяемых в оптике и оптоэлектронных приборах ближнего и среднего ИК-диапазона. Задачей, на решение которой направленно заявляемое изобретение, является разработка способа получения высокочистых халькойодидных стекол, позволяющего уменьшить количество примесей, поступающих из материалов аппаратуры. Сущность предлагаемого способа получения высокочистых халькойодидных стекол заключается в том, что компоненты шихты постоянно поступают в проточный плазмохимический реактор, инициирование реакции взаимодействия халькогена и летучих йодидов производят плазменным разрядом, синтез стеклообразующих соединений проводят в условиях неравновесной плазмы высокочастотного емкостного разряда при пониженном давлении. Техническим результатом изобретения является снижение загрязняющих примесей в составе стекол. 2 табл., 2 пр.

Изобретение относится к производству высокочистых халькогенидных стекол для изготовления оптических элементов, световодов и широкозонных полупроводниковых устройств. Изобретение позволяет исключить загрязнение получаемого халькогенидного стекла за счет неполного разложения исходных веществ, а также уменьшить количество примесей, поступающих из материалов аппаратуры. Способ получения халькогенидных стекол включает загрузку исходных веществ, содержащих мышьяк и серу, в проточный плазмохимический реактор, инициирование реакции взаимодействия мышьяка и серы высокочастотным плазменным разрядом в условиях неравновесной плазмы при пониженном давлении с образованием шихты халькогенидного стекла и получение самого халькогенидного стекла. В качестве исходных веществ используют элементарные мышьяк As и серу S, а в качестве транспортного и плазмообразующего газа используют инертный газ. Получение самого халькогенидного стекла проводят путем отпайки реактора и установки его в качающуюся печь, плавления и гомогенизации стеклообразующих соединений и охлаждения их. Устройство содержит плазмохимический реактор и систему откачки. Реактор изготовлен в виде проточной кварцевой трубки, снабженной плазмообразующей системой и системой диагностики, а система напуска выбранной газовой смеси включает особо чистые кварцевые резервуары с загрузочными кварцевыми емкостями для твердотельных мышьяка и серы. 2 н. и 1 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к области получения фторидных стекол с широким диапазоном пропускания. Технический результат изобретения заключается в получении оптически прозрачных стекол без кислородсодержащих примесей с расширенным диапазоном пропускания от 0,21 мкм до 7,5 мкм для фторцирконатного стекла и от 0,225 мкм до 8 мкм для фторгафнатного стекла. Шихту из смеси фторидов металлов, выбранных из ряда: фторид металла IV группы; BaF2; LaF3; AlF3; NaF, плавят в атмосфере сухого аргона при температуре 850÷950°С в течение 30÷60 минут и затем охлаждают. Перед плавлением шихту обрабатывают фторирующим агентом - дифторидом ксенона при температурах его реагирования с кислородсодержащими примесями с последующим удалением газообразных продуктов реакции в вакууме. В качестве фторида металла IV группы используют либо ZrF4, либо HfF4. Обработку шихты фторирующим агентом проводят при температуре 300÷350°С в течение 3÷5 часов. Удаление газообразных продуктов реакции в вакууме проводят при температуре 100÷150°C. Полученное стекло дополнительно отжигают при 250÷270°C в течение 2÷3 часов во избежание растрескивания. 2 з.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к халькогенидным стеклам. Технический результат изобретения - снижение температуры синтеза стекол. Халькогенидное стекло содержит, мас.%: As 30,0-35,0; S 40,0-50,0; Na 20,0-25,0. 1 табл.
Изобретение относится к особо чистым стеклам для инфракрасной оптики. Технический результат – снижение содержания оптически активных примесей. Германий, серу, йод загружают в реактор, плавят и подвергают закалке стеклообразующий расплав. В качестве источника йода используют йодид германия(IV). Из шихты получают промежуточные сплавы. Целевой стеклообразующий расплав получают термическим разложением промежуточных сплавов в двухсекционном реакторе в режиме динамического вакуума при управляемой скорости нагрева и выводе йодида германия(IV) из промежуточных сплавов при их разложении до достижения заданного макросостава стеклообразующего расплава. 2 пр.
Наверх