Способ получения горючего газа из торфа

Изобретение относится к торфоперерабатывающей промышленности и может быть использовано в малой энергетике и жилищно-коммунальном хозяйстве. Изобретение направлено на снижение стоимости и интенсификацию процесса термической переработки торфа, что достигается тем, что в способе получения горючего газа путем переработки торфа методом пиролиза в качестве катализатора используют алюмосиликатные материалы в количестве 2-30% (мас.), а смесь торфа с катализатором гранулируют. При этом в качестве алюмосиликатных материалов используют глинистый мергель, каолиновую, кембрийскую и бентонитовую глины, цеолиты H-Beta-25 и H-MORD. Гранулы целесообразно выполнять размером от 5 до 30 мм и получать их методом скатывания на грануляторах различных типов. 7 з.п. ф-лы, 2 ил., 10 табл.

 

Изобретение относится к торфоперерабатывающей промышленности и может быть использовано в малой энергетике и жилищно-коммунальном хозяйстве.

Известен способ переработки торфа, при котором получают газообразную составляющую. Способ осуществляют путем двухступенчатого нагрева торфа. На первой ступени торф высушивают до влажности не более 15% путем его порционной подачи по 350-1050 г/сек и нагрева до температуры 120±5°С. Образовавшийся пар и топочные газы очищают и отводят. На второй ступени твердый остаток нагревают до температуры 520-530°С без доступа кислорода в течение 1-6 сек (RU № 2259385, кл. C10F 7/00, C05F 11/02, 27.08.2005).

Недостатками этого способа являются значительные затраты энергии на сушку и термическую переработку торфа (нагрев до 1050°С).

Прототипом изобретения является способ получения горючего газа из торфа, включающий нагрев торфа с последующей подачей его в зону нагрева паровоздушного дутья по достижении температуры 180-220°С, причем нагрев осуществляют в присутствии палладиевого катализатора на твердом носителе в виде гранул с размером 3-4 мм (RU № 2185418, кл. С10J 3/00, 20.07.2002).

Недостатками прототипа являются использование дорогостоящего палладиевого катализатора, значительные затраты, связанные с эксплуатацией каталитической системы, а также затраты энергии на подачу паровоздушного дутья.

Пиролиз является перспективным низкотемпературным (до 700°С) методом переработки органогенного топлива (торфа) для получения горючего газа, который возможно использовать в малой энергетике и жилищно-коммунальном хозяйстве. При этом значительно упрощается конструкция теплогенераторов и котлов без снижения КПД установок, улучшается экологическая обстановка на прилегающих территориях за счет существенного уменьшения выбросов продуктов горения.

Задачей, решаемой при создании изобретения, является снижение энергоемкости процесса получения горючего газа и исключение из процесса дорогостоящего палладиевого катализатора.

Технический результат изобретения - интенсификация и упрощение процесса получения горючего газа из торфа.

Поставленная задача и указанный технический результат достигается тем, что в способе получения горючего газа из торфа путем его переработки методом каталитического пиролиза при температуре 400-500°С в присутствии катализатора, который перед нагревом смешивают с торфом и гранулируют, согласно изобретению в качестве катализатора используют алюмосиликатные материалы в количестве 2-30% (мас.). При этом в качестве алюмосиликатного материала используют или бентонитовую глину, или глинистый мергель, или кембрийскую глину, или каолиновую глину, или синтетический цеолит H-Beta-25, или синтетический цеолит Н-Mord. Гранулы торфа с алюмосиликатным материалом получают размером от 5 до 30 мм методом окатывания.

Использование алюмосиликатных материалов в качестве катализатора облегчает процесс гранулирования, выступая в роли дополнительного связующего, что позволяет уменьшить количество влаги, необходимой на стадии гранулообразования, и тем самым сократить энергозатраты и время на сушку торфа. Также алюмосиликатные материалы исполняют роль каталитических систем в процессах нагрева, что позволяет снизить температуру проведения указанных процессов и интенсифицировать их. При этом внесение алюмосиликатных минералов меньше 2% не эффективно, а при внесении алюмосиликатов больше 30% происходит снижение выхода горючего газа. Гранулы размера меньше 5 мм и больше 30 мм изготавливать нецелесообразно в связи с трудностью их использования и ухудшением их физико-механических характеристик.

Данное изобретение иллюстрируется следующими диаграммами, где на фиг.1 - зависимость теплоты сгорания пиролизных газов от вида катализатора при проведении процесса каталитического пиролиза (концентрация катализатора составляла 30% (мас.); на фиг.2 - зависимость теплоты сгорания пиролизных газов от температуры проведения процесса каталитического пиролиза в присутствии бентонитовой глины в концентрации 30%.

Способ получения торфяного газа осуществляется следующим образом.

Предварительно торф смешивают с алюмосиликатным материалом, концентрация которого составляет 2-30% (мас.), после чего смесь гранулировали до получения гранул размером от 5 до 30 мм. Гранулы подвергали пиролизу при температуре 460°С в лабораторной реакторной установке для получения горючего газа.

Пример 1

В экспериментах был использован верховой пушицево-сфагновый торф, как наиболее распространенный в Тверской области. Указанный торф смешивали с бентонитовой глиной таким образом, чтобы концентрация этого катализатора составляла 2% (мас.) от массы навески торфа. Получившуюся массу гранулировали. Навеску гранулированного топлива массой около 2 г подвергали пиролизу в реакторе периодического действия при температуре 460°С и атмосферном давлении. Полученная газовая смесь обладала характеристиками, представленными в табл.1.

Пример 2

Эксперимент в примере 2 проводился аналогично опыту в примере 1, однако в качестве модифицирующей добавки использовали бентонитовую глину в концентрации 10% (мас.). Полученная газовая смесь обладала характеристиками, представленными в табл.2.

Пример 3

Эксперимент в примере 3 проводился аналогично опыту в примере 1, однако в качестве модифицирующей добавки использовали каолиновую глину в концентрации 30% (мас.). Полученная газовая смесь обладала характеристиками, представленными в табл.3.

Пример 4

Эксперимент в примере 4 проводился аналогично опыту в примере 1, однако в качестве модифицирующей добавки использовали глинистый мергель в концентрации 30% (мас.). Полученная газовая смесь обладала характеристиками, представленными в табл.4.

Пример 5

Эксперимент в примере 5 проводился аналогично опыту в примере 1, однако в качестве модифицирующей добавки использовали бентонитовую глину в концентрации 30% (мас.). Полученная газовая смесь обладала характеристиками, представленными в табл.5.

Пример 6

Эксперимент в примере 6 проводился аналогично опыту в примере 1, однако в качестве модифицирующей добавки использовали кембрийскую глину в концентрации 30% (мас.). Полученная газовая смесь обладала характеристиками, представленными в табл.6.

Пример 7

Эксперимент в примере 7 проводился аналогично опыту в примере 1, однако в качестве модифицирующей добавки использовали синтетический цеолит H-Beta-25 в концентрации 30% (мас.). Полученная газовая смесь обладала характеристиками, представленными в табл.7.

Пример 8

Эксперимент в примере 8 проводился аналогично опыту в примере 1, однако в качестве модифицирующей добавки использовали синтетический цеолит H-MORD в концентрации 2% (мас.). Полученная газовая смесь обладала характеристиками, представленными в табл.8.

Пример 9

Эксперимент в примере 9 проводился аналогично опыту в примере 1, однако модифицирующую добавку не использовали. Масса гранулированного топлива (торфа) составляла 2 г. Полученная газовая смесь обладала характеристиками, представленными в табл.9.

Из представленных выше примеров наибольшее значение теплоты сгорания пиролизной газовой смеси наблюдалось при использовании бентонитовой глины (фиг.1).

При исследовании влияния температуры на процесс каталитического пиролиза торфа, были получены экспериментальные данные, на основании которых можно сделать вывод о том, что оптимальной температурой является 460°С. Именно при этой температуре наблюдалось максимальное значение теплоты сгорания пиролизных газов (фиг.2).

Основные физико-механические характеристики органоминеральных топливных гранул на основе торфа представлены в табл.10.

Данное изобретение в настоящее время находится на стадии опытно-лабораторных испытаний.

Табл.1
Способ получения горючего газа из торфа
Время, секОбъем полученной газовой смеси, млКоличество углеводородов в газовой смеси, млТеплота сгорания газовой смеси, МДж/м3
МетанЭтанЭтиленПропан
7202169,891,671,351,8911,39
132024513.712,531,812,5318,49
192026316,893,332,113,0019,53
288027519,333,892,263,3020,12
4080281,520,864,192,323,4519,82

Табл.2
Время, секОбъем полученной газовой смеси, млКоличество углеводородов в газовой смеси, млТеплота сгорания газовой смеси, МДж/м3
МетанЭтанЭтиленПропан
72018811,226,741,282,5614,92
132022817,948,651,803,0818,36
192024321,859,351,963,2518,43
288025224,639,722,033,3418,36
408025826,579,932,063,3918,06

Табл.3
Время, секОбъем полученной газовой смеси, млКоличество углеводородов в газовой смеси, млТеплота сгорания газовой смеси, МДж/м3
МетанЭтанЭтиленПропан
7202196,156,430,722,6910,05
132026811,559,181.413,7216,32
192028614,9910,261,774,1218,73
288030018,1311,152,004,4219,93
408030820,2111,702,104,6019,59

Табл.4
Время, секОбъем полученной газовой смеси, млКоличество углеводородов в газовой смеси, млТеплота сгорания газовой смеси, МДж/м3
МетанЭтанЭтиленПропан
7202208,737,571,122,9810,8
132026113,8510,051,803,8917,03
192027817,3011,172,174,2718,09
288028920,1411,912,354,5119,24
408029521,9212,322,424,6419,94

Табл.5
Торфоминеральное топливо
Время, секОбъем полученной газовой смеси, млКоличество углеводородов в газовой смеси, млТеплота сгорания газовой смеси, МДж/м3
МетанЭтанЭтиленПропан
7202077,631,151,090,637,12
132025515,273,272,191,4525,23
192027220,114,772,771,9529,26
2880281,523,525,673,032,2329,84
4080286,525,546,133,122,3728,58

Табл.6
Время, секОбъем полученной газовой смеси, млКоличество углеводородов в газовой смеси, млТеплота сгорания газовой смеси, МДж/м3
МетанЭтанЭтиленПропан
7202086,615,990,852,7110,21
132025211,658,341,493,6718,19
192026814,709,351,824,0418,43
288027917,4510,052,004,2818,67
408028519,1910,432,084,4019,15

Табл.7
Время, секОбъем полученной газовой смеси, млКоличество углеводородов в газовой смеси, млТеплота сгорания газовой смеси, МДж/м3
МетанЭтанЭтиленПропан
7207205,783,520,742,4810,11
1320132011,996,101,453,7015,85
1920192016,347,531,924,2218,04
2880288021,838,812,374,7018,88
4080408024,429,332,494,8820,74

Табл.8
Время, секОбъем полученной газовой смеси, млКоличество углеводородов в газовой смеси, млТеплота сгорания газовой смеси, МДж/м3
МетанЭтанЭтиленПропан
72022312,028,242,647,0113,96
132025216,199,853,478,1620,41
192026518,8310,593,868,6520,76
288028022,6011,394,219,0520,48
4080286,524,4711,714,339,1919,69

Табл.9
Торфоминеральное топливо
Время, секОбъем полученной газовой смеси, млКоличество углеводородов в газовой смеси, мл.Теплота сгорания газовой смеси, МДж/м3
МетанЭтанЭтиленПропан
7201613,830,450,270,194,87
13201956,400,980,590,4112,10
1920228,510,382,091,130,8616,42
288023711,662,451,251,0117,21
408024312,762,741,321,1318,61

Табл.10
ПоказателиТорф + алюмосиликаты
Плотность сухого вещества гранул, кг/м3700-900*
Экспериментальные значения максимальной прочности гранул на одноосное сжатие, кПа (равновесное влагосодержание)4300-6280*
* - значения изменяются в данном интервале в зависимости от вида алюмосиликата, использующегося в качестве модифицирующей добавки, и диаметра получаемых гранул.

1. Способ получения горючего газа из торфа путем его нагрева в присутствии катализатора, отличающийся тем, что в качестве катализатора используют алюмосиликатные материалы в концентрации 2-30 мас.%, которые перед нагревом смешивают с торфом и гранулируют, а нагрев ведут при температуре 400-500°С.

2. Способ по п.1, отличающееся тем, что в качестве алюмосиликатного материала используют бентонитовую глину.

3. Способ по п.1, отличающееся тем, что в качестве алюмосиликатного материала используют глинистый мергель.

4. Способ по п.1, отличающееся тем, что в качестве алюмосиликатного материала используют кембрийскую глину.

5. Способ по п.1, отличающееся тем, что в качестве алюмосиликатного материала используют каолиновую глину.

6. Способ по п.1, отличающееся тем, что в качестве алюмосиликатного материала используют синтетический цеолит H-Beta-25.

7. Способ по п.1, отличающееся тем, что в качестве алюмосиликатного материала используют синтетический цеолит H-Mord.

8. Способ по п.1, отличающийся тем, что гранулы торфа с алюмосиликатным материалом получают размером от 5 до 30 мм методом скатывания.



 

Похожие патенты:

Изобретение относится к области получения газообразного топлива из древесного сырья и может быть использовано для получения тепла, электроэнергии и жидкого топлива.

Изобретение относится к области экологически чистой термохимической переработки вторичных древесных и растительных ресурсов, в частности древесного опила или торфа в энергетических установках для получения карбидной нефти и высококалорийного газа.

Изобретение относится к области термической переработки измельченных древесных отходов или брикетированного торфа в экологически чистых газогенераторных установках с паровоздушным дутьем в лесном, торфяном, сельском и др.

Изобретение относится к торфоперерабатывающей промышленности, а именно к термохимическому получению газа из торфа. .

Изобретение относится к малогабаритным установкам для получения из твердых топлив газа, пригодного для сжигания в бытовых устройствах, в том числе, и для отопления помещения.

Изобретение относится к способу производства газа, пригодного для выработки энергии из угля. .

Изобретение относится к области производства среднетемпературного кокса металлургического назначения и к области производства синтез-газа для последующего его использования в химической промышленности или энергетике

Изобретение относится к области химии

Изобретение относится к способу и к системам, в которых скомпонованы процесс газификации угля с процессом прямого производства железа на основе угля

Изобретение относится к способу дозированного извлечения от мелко- до крупнозернистого твердого вещества или смеси твердых веществ из накопительного бункера с устройством для образования псевдоожиженного слоя в области выгрузки или же в дозировочной камере дозирующего бункера, а также к соответствующему устройству для осуществления способа

Изобретение относится к горному делу и может быть применено в подземной газификации бурого угля в тонких и средней мощности пластах. Способ включает осушение угольного пласта, нагнетание в реакционный канал окислителя по вертикальным дутьевым скважинам, отсос из него продуктов газификации через газоотводящие скважины и минимизацию давления в реакционном канале. При этом дополнительно бурят две вертикальные скважины до почвы угольного пласта и соединенные с ними две вертикальные скважины длиной 100-140 м на границах отрабатываемого участка газифицируемого угольного пласта на расстоянии 50-60 м друг от друга, а также нагнетательные скважины по центру данного участка пласта с шагом 15-20 м. В качестве окислителя используют атмосферный воздух с добавкой парокислородной смеси в количестве 20000-50000 м3/ч, поддерживают температуру огневого забоя на уровне 550-700°С, а управляют огневым забоем последовательным переключением на нагнетательную скважину, к которой подходит огневой забой, а также путем изменения количества нагнетаемого окислителя. Технический результат заключается в обеспечении устойчивого горения в огневом забое фильтрационного канала и повышении калорийности энергетического газа при подземной газификации тонких и средней мощности пластов бурого угля. 1 ил., 1 табл.

Изобретение относится к области переработки твердых бытовых и промышленных отходов с получением в качестве конечного продукта синтез-газа. Способ разрушения углеродо- и азотосодержащего сырья включает подачу углеродо- и азотосодержащего сырья в цилиндрический корпус, нагревание его, создание разрежения во внутренней полости корпуса, вывод газа и выгрузку зольного остатка. Внутреннюю полость корпуса предварительно прогревают перед подачей сырья в канал загрузки, поступающее непрерывно из канала загрузки сырье перемещают с помощью шнека и последовательно направляют в камеру начального разложения, нагревая до температуры 120-340°C с давлением 600-500 КПа, образовавшуюся влагу и первичный пиролизный газ отводят через газоотводную сетку в камеру дожига, подавая в нее дозировано кислород в составе воздуха до получения оксидов CO, NO, далее сырье подвергают разрушению сначала в первой зоне при температуре 340-1000°C и давлении 600-700 КПа, а затем во второй зоне при температуре 1700°C и давлении 900-700 КПа, при этом разрежение в зонах регулируют изменением разрежения в трубках контура разрежения, принадлежащих соответствующей зоне, кислород в составе воздуха в ствол корпуса подают через окно зольного канала. Изобретение позволяет увеличить степень разрушения сырья. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к способу непрерывного получения синтез-газа непосредственной газификацией углеродных фракций, содержащихся в нефтеносных песках и/или нефтеносных сланцах, в вертикальной технологической камере (2) с зоной кальцинирования и зоной окисления, где кальцинированные фракции, богатые углеродом, окисляются содержащим кислород газом. Газообразные продукты реакции отбирают в верхней части вертикальной технологической камеры (2), которая выполнена в форме вертикальной шахтной печи, через которую сыпучий материал, который сам по себе не окисляется, проходит непрерывно сверху вниз. Содержащий кислород газ (10) вводят, по меньшей мере, частично ниже зоны окисления, таким образом продвигая возрастающий газовый поток. Сыпучий материал снабжен, по меньшей мере, частично компонентом натуральной инертной горной породы нефтеносных песков и/или нефтеносного сланца. Добавление щелочных веществ преобразует при восстановительных условиях газообразные серосодержащие соединения, которые были получены при температурах свыше 400°C из компонентов нефтеносных песков и/или нефтеносного сланца, путем химической реакции в твердые серосодержащие соединения, которые, по меньшей мере, частично отводятся с газообразными продуктами реакции и при температурах выше 300°C удаляются из газовой фазы посредством отделения мелкозернистых материалов. Способ является подходящим с экологической точки зрения и энергосберегающим, при этом не создает больших количеств загрязненных остатков. 17 з.п. ф-лы, 1 ил.

Изобретение относится к реакторам плазменной газификации или витрификации материалов, которые имеют реакционные слои из углеродсодержащего материала, способу формирования и поддержания углеродсодержащего слоя и исходному материалу для формирования углеродсодержащего изделия для использования среди частиц углеродсодержащего слоя. Реактор содержит реакционный сосуд, содержащий углеродсодержащий слой и имеющий одну или несколько плазменных горелок для создания повышенной температуры внутри слоя, реакционный сосуд, имеющий одно или несколько впускных отверстий для загружаемого материала над слоем для закладки перерабатываемого материала снаружи сосуда на слой, одно или несколько газоотводящих отверстий над слоем для выхода газообразных продуктов из сосуда и одно или несколько отверстий для шлака на дне слоя для выхода расплавленного шлака и металлов из сосуда, и углеродсодержащий слой, содержащий массу частиц, которые содержат углерод и имеют различный размер и форму, оставляющие пустоты между частицами, и с прочностью частиц, достаточной для сохранения пустот между частицами под давлением перерабатываемого материала на слой, и масса частиц, содержащих углерод, имеет по меньшей мере 25% содержания углерода в частицах, отличных от кокса, выбранных из группы, состоящей из деревянных брусков из природной древесины, блоков, содержащих углеродсодержащую пыль и одно или несколько связующих веществ, и их смесей. Способ формирования и поддержания углеродсодержащего слоя с компонентами, заменяющими кокс, включает формирование некоторого числа некоксовых компонентов, формирование первоначального углеродсодержащего слоя количеством частиц кокса, осуществление процесса пиролиза с углеродсодержащим слоем и восполнение углеродного материала в процессе пиролиза. Изобретение обеспечивает минимизацию использования кокса. 5 н. и 26 з.п. ф-лы, 3 табл., 9 ил.

Изобретение относится к химической промышленности и охране окружающей среды. Способ включает предварительную обработку и хранение биомассы, газификацию биомассы в газификаторе, охлаждение, промывку и удаление пыли из сырого газа газификации, хранение свежего газа. В газификаторе используют внешний источник тепла и регулируют температуру реакции в интервале 1300-1750°С. Полученный в газификаторе сырой синтез-газ вводят в башенный охладитель и двухстадийный бойлер-утилизатор отходящего тепла. Охлажденный сырой газ подвергают обработке с помощью промывки и электроосаждения. Полученный свежий газ сохраняют в газгольдере. Изобретение позволяет улучшить качество сырого газа. 8 з.п. ф-лы, 3 ил.
Наверх