Электролит меднения

Изобретение относится к гальванотехнике и может быть использовано для получения медных покрытий на деталях различного назначения. Электролит содержит медь(II) от 0,05 до 1,0 моль/л, нитрилотри(метиленфосфоновую) кислоту или ее растворимое соединение от 0,1 до 2,0 моль/л, вещество класса аминов, выбранное из группы, состоящей из моноэтаноламина, диэтаноламина, триэтаноламина, N,N-диметилэтаноламина, этилендиамина, диэтилентриамина, триэтилентетрамина, от 0,01 до 0,2 моль/л и воду до 1,0 л. Разработка электролита меднения на основе комплекса меди(II) с нитрилотри(метиленфосфоновой) кислотой обеспечивает получение мелкокристаллических покрытий высокого качества и работу электролита в широком диапазоне температур и значений рН, а также расширение ассортимента комплексных фосфонатных электролитов меднения. 3 з.п. ф-лы.

 

Изобретение относится к гальванотехнике, в частности к водным электролитам для получения медных покрытий, и может быть использовано в различных отраслях промышленности для покрытия медью деталей из стали, меди и ее сплавов, алюминия и его сплавов, прежде всего при изготовлении деталей точной механики и электронной техники.

Для непосредственного меднения стальных изделий, а также для покрытия медью деталей сложной конфигурации обычно используют комплексные электролиты меднения, содержащие в качестве основных компонентов растворимую в воде соль меди(II), являющуюся источником катиона меди(II), и лиганд (неорганическое или органическое вещество) для связывания меди(II) в комплекс.

Из комплексных электролитов меднения наиболее известны и давно применяются цианистые электролиты меднения (Кудрявцев Н.Т. Электролитические покрытия металлами. - М.: Химия, 1979, С.248-253). Однако недостатки цианистых электролитов (нестабильность состава и высокая токсичность) стимулируют поиск нецианистых электролитов меднения, обеспечивающих нанесение качественных медных покрытий с высокой прочностью сцепления с основой, в том числе непосредственно на сталь, и одновременно удобных в эксплуатации и нетоксичных.

Известны нецианистые комплексные электролиты меднения, содержащие в своем составе в качестве лигандов аммиак, пирофосфаты калия и натрия, этилендиамин, трилон Б и другие соединения, но ни один из этих электролитов в полной мере не удовлетворяет предъявляемым требованиям (Беленький М.А., Иванов А.Ф. Электроосаждение металлических покрытий. Справочник. - М.: Металлургия, 1985, С.79-83).

Предложены также нецианистые электролиты меднения на основе комплексов меди(II) с фосфорорганическими лигандами, в частности с нитрилотри(метиленфосфоновой) кислотой (Haynes R.T., Irani R.R., Langguth R.P. US Patent 3475293, опубл. 1969. Kowalski X. US Patent 3706635, опубл. 1972. Kowalski X. US Patent 3914162, опубл. 1975).

Наиболее близким по технической сущности к заявленному изобретению является электролит меднения на основе комплекса, состоящего из иона меди(II) и аниона нитрилотри(метиленфосфоновой) кислоты (Haynes R.T., Irani R.R., Langguth R.P. US Patent 3475293, опубл. 1969). Указанный электролит содержит медь(II) в концентрации от 1 до 5 масс.% (по металлу), нитрилотри(метиленфосфоновую) кислоту, карбонат калия и воду при рН от 7,0 до 11,5, является экологически безопасным и позволяет получать медные покрытия на стальной и медной основе при температуре от 50 до 70°С и плотности тока от 0,5 до 15 А/дм2.

Недостатком известного электролита является необходимость работы при повышенной температуре, а также низкое качество медного покрытия.

Экспериментальная проверка этого электролита показала, что из него получаются медные покрытия темного цвета и шероховатые.

Задачей заявленного изобретения является разработка электролита меднения на основе комплекса меди(II) с нитрилотри(метиленфосфоновой) кислотой, обеспечивающего получение покрытий высокого качества в широком диапазоне температур, а также расширение ассортимента комплексных фосфонатных электролитов меднения.

Поставленная задача достигается тем, что в электролит меднения, содержащий медь(II), нитрилотри(метиленфосфоновую) кислоту или ее растворимое соединение и воду при следующем содержании компонентов (моль/л):

Медь(II)0,05-1,0
Нитрилотри(метиленфосфоновая) кислота
или ее растворимое соединение0,1-2,0
Водадо 1,0 л,

дополнительно вводят хотя бы одно вещество класса аминов, выбранное из группы, включающей моноэтаноламин, диэтаноламин, триэтаноламин, N,N-диметилэтаноламин, этилендиамин, диэтилентриамин, триэтилентетрамин, в концентрации от 0,01 до 0,2 моль/л. В качестве соединения меди(II) желательно использовать сульфат, сульфамат, нитрат, тетрафтороборат, гексафторосиликат меди(II). В качестве растворимых соединений нитрилотри(метиленфосфоновой) кислоты желательно использовать натриевую (предпочтительно динатриевую, тринатриевую, гексанатриевую) или калиевую соль нитрилотри(метиленфосфоновой) кислоты.

Нижний предел интервала концентраций меди(II) в электролите выбран в соответствии с требуемой скоростью электроосаждения меди. Верхний предел интервала концентраций меди(II) в электролите ограничивается растворимостью комплексной соли меди(II) в электролите.

Нижний предел интервала концентраций нитрилотри(метиленфосфоновой) кислоты обусловлен необходимостью формирования прочного комплекса с медью(II). Верхний предел интервала концентраций нитрилотри(метиленфосфоновой) кислоты ограничивается ее растворимостью в электролите.

Нижний предел интервала концентраций амина соответствует той его концентрации, при которой достигается минимально значимый эффект от его введения в электролит, то есть качество покрытия улучшается. Верхний предел интервала концентраций амина соответствует той его концентрации, при которой эффект от его введения в электролит начинает существенно убывать, то есть качество покрытия ухудшается.

Значение рН электролита меднения должно находиться в пределах от 6,5 до 10,0. Понижение рН можно осуществить добавками 3%-ного раствора серной кислоты, повышение - добавками 3%-ного раствора едкого кали.

Условия электроосаждения меди из предложенного электролита: температура электролита от 15 до 70°С, катодная плотность тока от 0,25 до 2,0 А/дм2.

В качестве анодов используется медь марки М0 и M1.

Аноды растворяются равномерно без образования анодного шлама и нерастворимых осадков, если анодная плотность тока не превышает 2,0 А/дм2. При большей анодной плотности тока аноды следует помещать в чехлы из полипропиленовой ткани.

Корректирование электролита по содержанию меди(II), нитрилотри(метиленфосфоновой) кислоты и амина производится по данным химического анализа.

Электролит меднения может быть приготовлен различными способами, например:

Способ 1.

Оксид меди(II) перемешивают при комнатной температуре с водным раствором нитрилотри(метиленфосфоновой) кислоты до полного растворения осадка. К полученному раствору при перемешивании прибавляют сначала необходимое количество амина, затем 30%-ный раствор гидроксида калия до достижения заданного значения рН. Объем электролита доводят водой до 1,0 л, перемешивают и фильтруют электролит.

Способ 2.

При комнатной температуре сливают водный раствор, полученный из пентагидрата сульфата меди(II), и водный раствор, приготовленный путем прибавления гидроксида натрия к водной суспензии нитрилотри(метиленфосфоната)(2-) натрия C3H10O9P3NNa2·1,5H2O, и перемешивают до растворения первоначально выпавшего осадка. К полученному раствору при перемешивании прибавляют необходимое количество амина. Прибавляют 30%-ный раствор гидроксида натрия до достижения заданного значения рН. Объем доводят водой до 1,0 л и перемешивают готовый электролит.

Приготовленные электролиты стабильны в работе и не требуют предварительной проработки.

Примеры реализации заявленного изобретения приведены ниже.

Во всех примерах электроосаждение меди проводилось в стеклянной ванне, помещенной в водяной термостат, на пластины из стали или латуни толщиной 1 мм при катодной плотности тока 1 А/дм2, аноды - медь марки M1. Температура измерялась и поддерживалась с точностью ±1°С. Значение рН измерялось с помощью иономера. Качество покрытия оценивалось визуально.

Пример 1 (прототип).

Готовят электролит меднения, содержащий 0,6 моль/л меди(II) и 1,2 моль/л нитрилотри(метиленфосфоновой) кислоты и имеющий рН 7,3. Электролиз проводят при температуре 25°С в течение 1 часа. В результате электролиза на катоде получают медное покрытие темного цвета с повышенной шероховатостью.

Пример 2.

Готовят электролит меднения, содержащий 0,6 моль/л меди(II), 1,2 моль/л нитрилотри(метиленфосфоновой) кислоты, 0,06 моль/л этилендиамина и имеющий рН 7,8. Электролиз проводят при температуре 25°С в течение 1 часа. В результате электролиза на катоде получают светлое, плотное, гладкое, мелкокристаллическое медное покрытие розового цвета с некоторой шероховатостью по краям пластины.

Пример 3.

Готовят электролит меднения, содержащий 0,6 моль/л меди(II), 1,2 моль/л нитрилотри(метиленфосфоновой) кислоты, 0,18 моль/л этилендиамина и имеющий рН 7,8. Электролиз проводят при температуре 25°С в течение 1 часа. В результате электролиза на катоде получают светлое, плотное, гладкое, мелкокристаллическое медное покрытие розового цвета с некоторой шероховатостью по краям пластины.

Пример 4.

Готовят электролит меднения, содержащий 0,6 моль/л меди(II), 1,2 моль/л нитрилотри(метиленфосфоновой) кислоты и 0,06 моль/л диэтилентриамина и имеющий рН 8,7. Электролиз проводят при температуре 50°С в течение 1 часа. В результате электролиза на катоде получают светлое, плотное, гладкое, мелкокристаллическое медное покрытие розового цвета, шероховатость отсутствует.

Как видно из приведенных примеров, предложенный электролит позволяет получать медные покрытия высокого качества (плотные, гладкие, мелкокристаллические, светло-розового цвета). Он стабилен в работе и обладает высокой рассеивающей способностью, что позволяет использовать его при покрытии деталей сложного профиля. В этом электролите возможно непосредственное меднение стали с получением высокой прочности сцепления покрытия с основой без применения каких-либо дополнительных технологических приемов (загрузка деталей под током, ударный ток и других). Покрытия не отслаиваются от основы при изгибе под углом 90° и после нагревания при 250°С в течение 1 часа.

1. Электролит меднения, содержащий медь(II), нитрилотри(метиленфосфоновую) кислоту или ее растворимое соединение и воду, отличающийся тем, что он дополнительно содержит по меньшей мере одно вещество класса аминов, выбранное из группы, включающей моноэтаноламин, диэтаноламин, триэтаноламин, N,N-диметилэтаноламин, этилендиамин, диэтилентриамин, триэтилентетрамин при следующем содержании компонентов, моль/л:

медь(II)от 0,05 до 1,0
нитрилотри(метиленфосфоновая) кислота
или ее растворимое соединениеот 0,1 до 2,0
аминот 0,01 до 0,2
водадо 1,0 л

2. Электролит по п.1, отличающийся тем, что в качестве источника меди(II) использован сульфат, сульфамат, нитрат, тетрафтороборат или гексафторосиликат меди(II).

3. Электролит по п.1, отличающийся тем, что в качестве растворимого соединения нитрилотри(метиленфосфоновой) кислоты использована ее натриевая или калиевая соль.

4. Электролит по п.3, отличающийся тем, что в качестве натриевой соли нитрилотри(метиленфосфоновой) кислоты использована динатриевая, тринатриевая или гексанатриевая соль нитрилотри(метиленфосфоновой) кислоты.



 

Похожие патенты:

Изобретение относится к способам меднения пластмасс, в частности полимерных композиционных материалов на основе углеродных волокон, и может быть использовано при производстве мебельной фурнитуры, бытовых приборов, предметов быта, в автомобильной и радиотехнической отраслях промышленности.
Изобретение относится к области гальваностегии и может быть использовано для нанесения медных покрытий без применения промежуточного подслоя в машиностроении и приборостроении.

Изобретение относится к металлургии и может быть применено для получения материалов со специфичной структурой и особыми свойствами, например, в виде покрытий, пленок или порошков, состоящих из пентагональных кристаллитов, обладающих высокой адсорбционной способностью.
Изобретение относится к области гальваностегии и может быть использовано для электрохимического меднения стальной поверхности деталей без нанесения дополнительного подслоя.
Изобретение относится к области гидрометаллургии цветных металлов, в частности к электролитическому рафинированию меди, и может быть использовано в гальванотехнике.

Изобретение относится к гальваностегии, в частности к нанесению медных покрытий на сталь, без применения промежуточного подслоя, и может быть использовано в машиностроении и приборостроении для получения блестящих медных покрытий.

Изобретение относится к области гальванопластики, в частности к изготовлению композиционной медной фольги, и может быть использовано для производства печатных плат.

Изобретение относится к гальваностегии и может быть использовано в машиностроении и приборостроении. .

Изобретение относится к гальваностегии и может быть применено в машиностроении и приборостроении. .

Изобретение относится к гальваностегии, в частности к нанесению медных покрытий на сталь без применения промежуточного подслоя, и может быть использовано в машиностроении и приборостроении.
Изобретение относится к области нанесения металлических покрытий гальваническим способом и может быть использовано в радиоэлектронной промышленности, автомобилестроении и других отраслях

Изобретение относится к гальваностегии, в частности к нанесению медных покрытий на стальные подложки без применения промежуточного подслоя, и может найти применение в машиностроении, радио- и приборостроении

Изобретение относится к области гальваностегии, в частности к электролитическому нанесению медного покрытия на сталь без применения промежуточного подслоя, и может найти применение в машиностроительных областях промышленности, где важно получать пластичные медные покрытия с минимальным наводороживанием стальной основы
Изобретение относится к гальванотехнике и может быть использовано в технологии микроэлектроники, в которой слой меди необходимо нанести на тонкий подслой кобальта или его сплавов (кобальт-фосфор, кобальт-вольфрам-фосфор) или меди, находящейся на поверхности кремниевых пластин. Электроосаждение меди проводят из электролита меднения, содержащего сульфат меди, спирт этиловый, этилендиамминтетрауксусную кислоту (ЭДТУ), лаурилсульфат аммония и аммиак в виде водного раствора. Электролит меднения не содержит ионов щелочных металлов и пригоден для нанесения слоев меди на подслой меди, кобальта или его сплавов. 2 н. и 2 з.п. ф-лы, 4 пр.

Изобретение относится к области гальванотехники и может быть использовано для изготовления полупроводников. Способ электролитического осаждения меди на подложку, содержащую элементы поверхности субмикрометрового размера, имеющие размер отверстия 30 нанометров или менее, включает: а) контактирование с подложкой электролитической ванны для осаждения меди, содержащей источник ионов меди, один или более ускоряющих агентов и один или более подавляющих агентов, выбранных из соединений формулы I где каждый радикал R1 независимо выбирается из сополимера этиленоксида и по меньшей мере еще одного С3-С4 алкиленоксида, причем указанный сополимер представляет собой случайный сополимер, каждый радикал R2 независимо выбирается из R1 или алкила, Х и Y независимо представляют собой спейсерные группы, причем Х имеет независимые значения для каждой повторяющейся единицы, выбранные из С1-С6 алкилена и Z-(O-Z)m, где каждый радикал Z независимо выбирается из С2-С6 алкилена, n представляет собой целое число, больше или равное 0, m представляет собой целое число, больше или равное 1, в частности m равно 1-10, а содержание этиленоксида в сополимере этиленоксида и С3-С4 алкиленоксида составляет от 30 до 70%, и b) создание плотности тока в подложке в течение периода времени, достаточного для заполнения медью элемента субмикронного размера. Технический результат: получение равномерного покрытия без пустот и швов. 9 з.п. ф-лы, 6 пр., 7 ил., 1 табл.
Изобретение относится к электролитно-плазменной обработке поверхности металлов. Способ включает полировку детали из медьсодержащего сплава в электролите, используемой в качестве анода, и синхронное нанесение медного покрытия на стальную деталь, которую используют в качестве катода. На катод и анод подают напряжение 250-340 В при температуре электролита 60-90ºС. Электролит используют в виде водного раствора, содержащего хлористый аммоний, фтористый аммоний и аммоний лимоннокислый одно-, двух-, трехзамещенный или их смесь. Обеспечивается полирование активного анода до зеркального блеска с синхронным покрытием поверхности стального катода медью. 1 пр.

Изобретение относится к области гальванотехники и может быть использовано при изготовлении полупроводников. Композиция содержит по меньшей мере один источник меди и по меньшей мере одну добавку, получаемую путем реакции многоатомного спирта, содержащего по меньшей мере 5 гидроксильных функциональных групп, с по меньшей мере первым алкиленоксидом и вторым алкиленоксидом из смеси первого алкиленоксида и второго алкиленоксида. Способ включает контакт композиции для нанесения металлического покрытия с подложкой, создание плотности тока в подложке в течение времени, достаточного для осаждения металлического слоя на подложку. Технический результат: обеспечение заполнения отверстий нанометрового и микрометрового размера без пустот и швов. 3 н. и 12 з.п. ф-лы, 1 табл., 7 ил., 8 пр.

Изобретение относится к области гальванотехники и может быть использовано при изготовлении полупроводников. Композиция содержит по меньшей мере один источник ионов меди и по меньшей мере одну добавку, получаемую путем реакции а) соединения конденсата многоатомного спирта, полученного из по меньшей мере одного полиспирта формулы путем конденсации, с b) по меньшей мере одним алкиленоксидом с формированием конденсата многоатомного спирта, содержащего полиоксиалкиленовые боковые цепи, где m представляет собой целое число от 3 до 6, и X представляет собой m-валентный линейный или разветвленный алифатический или циклоалифатический радикал, имеющий от 2 до 10 атомов углерода, который может быть замещенным или незамещенным. Способ включает контакт электролитической ванны, содержащей упомянутую композицию, с подложкой, создание плотности тока в подложке в течение времени, достаточного для осаждения металлического покрытия. Технический результат: обеспечение заполнения канавок и отверстий нанометрового размера по существу без дефектов. 3 н. и 12 з.п. ф-лы, 6 ил., 6 пр.

Изобретение относится к нанесению металлических слоев покрытия и может быть использовано при изготовлении полупроводников. Предложен состав для нанесения металлического слоя, который содержит источник металлических ионов и по меньшей мере один подавляющий агент, который получают путем реакции аминного соединения, содержащего активные функциональные аминогруппы, со смесью этиленоксида и по меньшей мере одного соединения, выбранного из С3 и С4 алкиленоксидов, для получения случайных сополимеров этиленоксида и по меньшей мере еще одного из С3 и С4 алкиленоксидов, причем указанный подавляющий агент имеет молекулярную массу 6000 г/моль или более, а содержание этиленоксида в сополимере этиленоксида и С3-С4 алкиленоксида составляет от 30 до 70%. Также предложен способ электролитического нанесения металлического слоя на подложку путем контакта электролитической ванны для нанесения металлического слоя, содержащей упомянутый состав, с подложкой, и создания плотности тока в подложке в течение периода времени, достаточного для нанесения металлического слоя на подложку. Изобретения позволяет получить слой покрытия, обеспечивающий беспустотное заполнение элементов поверхности нанометрового и микрометрового масштаба. 3 н. и 12 з.п. ф-лы, 12 ил., 8 пр.

Изобретение относится к нанесению металлических слоев покрытия и может быть использовано при изготовлении полупроводников. Предложен состав для нанесения металлического слоя, содержащий источник металлических ионов и по меньшей мере один подавляющий агент, полученный путем реакции аминного соединения, содержащего по меньшей мере три активные функциональные аминогруппы, со смесью этиленоксида и по меньшей мере одного соединения, выбранного из С3 и С4 алкиленоксидов, для получения случайных сополимеров этиленоксида и по меньшей мере еще одного из С3 и С4 алкиленоксидов, причем содержание этиленоксида в сополимере этиленоксида и С3-С4 алкиленоксида составляет от 30 до 70%. Также предложен способ электролитического нанесения металлического слоя на подложку путем контакта электролитической ванны для нанесения металлического слоя, содержащей упомянутый состав, с подложкой, и создания плотности тока в подложке в течение периода времени, достаточного для нанесения металлического слоя на подложку. Изобретения позволяют получить слой покрытия, обеспечивающий беспустотное заполнение элементов поверхности нанометрового и микрометрового масштаба. 3 н. и 11 з.п. ф-лы, 15 ил., 1 табл., 12 пр.
Наверх