Датчик давления

Изобретение относится к датчикам давления. Датчик давления содержит сенсор давления и корпус, преимущественно образующий в своем внутреннем пространстве сенсорную камеру, в которой расположен сенсор. Корпус датчика давления имеет торцевую поверхность с отверстием, через которое к сенсору подают давление. Процессное присоединение к направляющему давление трубопроводу или резервуару имеет отверстие в торцевой поверхности. Процессное присоединение выполнено с возможностью соединения с корпусом датчика давления с возможностью расположения отверстия процессного присоединения соосно с отверстием корпуса и с возможностью охвата торцевой поверхностью присоединения торцевой поверхности корпуса. Между корпусом датчика давления и процессным присоединением расположено уплотнительное кольцо, содержащее эластомерный материал и герметизирующее щель между торцевой поверхностью присоединения и торцевой поверхностью корпуса. Преимущественно граничащие с щелью участки торцевой поверхности присоединения и торцевой поверхности корпуса копланарны друг другу. Техническим результатом изобретения является улучшение конструкции. 15 з.п. ф-лы, 2 ил.

 

Изобретение относится к датчику давления, в частности к датчику давления со сменным процессным присоединением. Датчики давления обычно присоединяют посредством процессного присоединения к направляющему давление трубопроводу или к направляющему давление резервуару. Для минимизации затрат на логистику желательно, чтобы предварительно калиброванный стандартный модуль датчика давления в зависимости от необходимости можно было соединить с большим числом процессных присоединений и чтобы соединение стандартного модуля с процессным присоединением не оказывало каких-либо влияний на калибровку. С другой стороны, гигиенические применения требуют присоединений, лишенных мертвых пространств и щелей, чтобы обеспечить простую очистку направляющих среду резервуаров или трубопроводов, на которых установлен датчик давления. В работающем от давления переключателе серии "Efector 500" с типовым обозначением PI2053 фирмы «ифм Электроник» для устранения щелей использовано металлическое уплотнение, причем отсутствие обратного влияния монтажа присоединения на калибровку датчика давления из-за повышенных зажимных усилий у этого решения представляется сомнительным.

Поэтому задачей этого изобретения является создание датчика давления с улучшенным присоединением для процессных присоединений. Эта задача решается согласно изобретению посредством датчика давления согласно независимому п.1 формулы.

Датчик давления согласно изобретению содержит сенсор давления, корпус, преимущественно образующий в своем внутреннем пространстве сенсорную камеру, в которой расположен сенсор, причем корпус датчика давления имеет торцевую поверхность с отверстием, через которое сенсор выполнен с возможностью подачи к нему давления, процессное присоединение, имеющее в торцевой поверхности отверстие, причем процессное присоединение выполнено с возможностью соединения с корпусом датчика давления с возможностью расположения отверстия процессного присоединения соосно с отверстием корпуса и с возможностью охвата торцевой поверхностью присоединения торцевой поверхности корпуса, причем между корпусом датчика давления и процессным присоединением расположено уплотнительное кольцо, содержащее эластомерный материал и герметизирующее щель между торцевой поверхностью присоединения и торцевой поверхностью корпуса, причем преимущественно граничащие с щелью участки торцевой поверхности присоединения и торцевой поверхности корпуса копланарны друг другу.

Корпус датчика давления имеет преимущественно на граничащем с торцевой поверхностью корпуса монтажном участке, в основном, осесимметричную или, по меньшей мере, в отдельных местах цилиндрически-симметричную конструкцию. Первый отрезок боковой поверхности монтажного участка корпуса датчика давления, граничащий с торцевой поверхностью корпуса, имеет полусферическое первое уплотнительное гнездо, которое поддерживает уплотнительное кольцо аксиально и радиально. Первое уплотнительное гнездо может иметь, например, отрезок тороидальной поверхности или поверхности сферической оболочки.

Первое уплотнительное гнездо имеет преимущественно первый, лишенный заусенцев переход к торцевой поверхности корпуса, который может проходить, например, в виде валика. Далее первое уплотнительное гнездо имеет второй переход ко второму отрезку боковой поверхности монтажного участка, граничащему на обращенной от торцевой поверхности стороне уплотнительного гнезда. Второй переход преимущественно также лишен заусенцев. В плоскостях вдоль оси цилиндра первое уплотнительное гнездо выполнено вогнутым, тогда как первый и второй переходы выполнены выпуклыми. Радиусы кривизны вогнутого участка покрывают при этом преимущественно угловой диапазон, по меньшей мере, 135°, предпочтительно, по меньшей мере, 150° и особенно предпочтительно, по меньшей мере, 180°.

Максимальный радиус второго отрезка боковой поверхности больше максимального радиуса первого перехода. Это значит, что ограничивающий торцевую поверхность корпуса первый переход смещен радиально внутрь относительно второго отрезка боковой поверхности монтажного участка. Таким образом, уплотнительное кольцо испытывает осевую и радиальную поддержки первым уплотнительным гнездом, так что оно при вставке монтажного участка корпуса датчика давления в отверстие процессного присоединения может быть аксиально и радиально зажато между первым уплотнительным гнездом и отверстием процессного присоединения.

Отверстие процессного присоединения может иметь для этого конструкцию, соответствующую монтажному участку корпуса датчика давления. Торцевая поверхность присоединения имеет на своем обращенном к отверстию процессного присоединения внутреннем краю третий, лишенный заусенцев выпуклый переход ко второму полусферическому уплотнительному гнезду, которое переходит в цилиндрическую внутреннюю стенку отверстия процессного присоединения. Минимальный радиус отверстия процессного присоединения, проходящий в зоне третьего перехода, меньше максимального радиуса второго перехода и больше максимального радиуса первого перехода.

Разность между минимальным радиусом отверстия процессного присоединения и максимальным радиусом первого перехода составляет преимущественно не более половины толщины материала уплотнительного кольца, предпочтительно не более трети и особенно предпочтительно не более четверти толщины материала уплотнительного кольца. Это ограничение предпочтительно потому, что за счет этого предотвращается слишком сильное разбухание уплотнительного кольца.

С другой стороны, предпочтительно, если разность между минимальным радиусом отверстия процессного присоединения и максимальным радиусом первого перехода настолько велика, что уплотнительное кольцо вдавливается вперед между торцевой поверхностью корпуса и торцевой поверхностью присоединения в такой степени, которая обеспечивает смещение уплотнительных линий, т.е. линий касания со стороны среды между уплотнительным кольцом и корпусом датчика давления или процессным присоединением, в зону первого и третьего выпуклых переходов так, что уплотнение в результате лишено щелей и отвечает гигиеническим требованиям. Для этого разность между минимальным радиусом отверстия процессного присоединения и максимальным радиусом первого перехода составляет преимущественно не менее одной шестой толщины материала уплотнительного кольца, предпочтительно не менее одной пятой толщины материала уплотнительного кольца.

Минимальный радиус кривизны составляет в смысле компактной геометрии уплотнения на первом и третьем выпуклых переходах преимущественно не более одной шестой и предпочтительно не более одной восьмой толщины материала уплотнительного кольца. Далее минимальный радиус кривизны составляет на первом и третьем выпуклых переходах преимущественно не менее одной двенадцатой и предпочтительно не менее одной десятой толщины материала уплотнительного кольца.

В предпочтительном варианте выполнения процессное присоединение и корпус датчика давления имеют соответствующие друг другу резьбовые участки, так что корпус датчика давления выполнен с возможностью ввинчивания в процессное присоединение. Для определения точного осевого положения названных компонентов по отношению друг к другу преимущественно предусмотрены осевые упорные поверхности, образованные радиальными уступами. Оказалось, что, в частности, у ввинчиваемых компонентов можно отказаться от бесспиральной обработки переходов и уплотнительных гнезд.

Отверстие корпуса у одного выполнения датчика давления согласно изобретению закрыто чувствительной к давлению мембраной, в частности металлической мембраной, которая действующее на нее давление вводит в гидравлическую систему передачи давления, с помощью которой давление подают к сенсору в корпусе датчика давления.

Корпус датчика давления и процессное присоединение содержат, например, металлические материалы, в том числе высококачественную сталь или алюминий. В качестве материала уплотнения подходит, например, СКЭПТ.

Другие подробности следуют из описания примера осуществления изобретения, изображенного на чертежах, на которых

фиг.1 - частичный продольный разрез фланца процессного присоединения с ввинченным монтажным участком датчика давления;

фиг.2 - подробный вид фиг.1.

В изображенном на фиг.1 и 2 примере выполнения датчик давления содержит корпус 1 с монтажным участком 10, который ввинчен заподлицо в отверстие 5 процессного присоединения 2. Корпус 1 имеет торцевую поверхность 4, окруженную, в основном, копланарной торцевой поверхностью 3 процессного присоединения 2. Между обеими торцевыми поверхностями проходит щель, закрытая уплотнительным кольцом 6, так что в результате возникает бесщелевое соединение между процессным присоединением 2 и корпусом 1. Уплотнительное кольцо 6 содержит эластомерный материал, например СКЭПТ. Уплотнительное кольцо 6 имеет внутренний диаметр 15,54 мм и толщину материала 2,62 мм. Внутренний диаметр соответствует двукратному значению минимального радиуса R4 первого полусферического уплотнительного гнезда 7, выполненного в боковой поверхности монтажного участка 10. Первое уплотнительное гнездо 7 выполнено тороидально-полусферическим, а радиус его кривизны в секущих плоскостях, образованных осью S симметрии, приблизительно равен половине толщины материала уплотнительного кольца 6. Вогнутая часть первого уплотнительного гнезда 7 ограничена к торцевой поверхности 4 корпуса первым выпуклым, лишенным заусенцев переходом, минимальный радиус кривизны которого в упомянутых выше осевых секущих плоскостях составляет около 0,3 мм. Максимальный радиус R1 первого перехода составляет около 8,75 мм. К боковой поверхности корпуса преобразователя предусмотрен второй выпуклый переход с минимальным радиусом кривизны 0,3 мм в осевых секущих плоскостях. Радиус R2 примыкающей боковой поверхности достаточно велик, чтобы радиальный уступ между R4 и вторым переходом мог служить осевой поддержкой уплотнительного кольца 6 для его осевого зажатия. Торцевая поверхность 3 процессного присоединения ограничена к отверстию третьим выпуклым переходом, который также имеет минимальный радиус кривизны 0,3 мм в осевых секущих плоскостях и к которому примыкает второе полусферическое уплотнительное гнездо 8, переходящее, наконец, в цилиндрический участок стенки отверстия 5 процессного присоединения. Второе полусферическое уплотнительное гнездо имеет на выпуклом участке приблизительно такой же радиус кривизны, что и выпуклый участок первого полусферического уплотнительного гнезда 7. Минимальный радиус R3 третьего перехода меньше радиуса R2 второго перехода на 0,55 мм больше максимального радиуса R1 первого перехода. Щель между торцевыми поверхностями процессного присоединения 2 и корпуса 1 датчика давления закрыта уплотнительным кольцом 6, которое при ввинчивании корпуса датчика давления в отверстие процессного присоединения вдавливается за счет осевых зажимных усилий в щель настолько, что линии касания между уплотнительным кольцом 6 и первой и третьей переходными зонами смещены, по меньшей мере, до осевой плоскости максимального радиуса R1 и до осевой плоскости минимального радиуса R3 в направлении торцевых поверхностей. Преимущественно линии касания проходят в осевой зоне между плоскостью торцевых поверхностей и осевой плоскостью максимального радиуса R1 и осевой плоскости минимального радиуса R3.

1. Датчик давления, содержащий сенсор давления, корпус, имеющий торцевую поверхность с отверстием, через которое сенсор выполнен с возможностью подачи к нему давления, процессное присоединение, имеющее в торцевой поверхности отверстие, причем процессное присоединение выполнено с возможностью соединения с корпусом датчика давления с возможностью расположения отверстия процессного присоединения соосно с отверстием корпуса и с возможностью охвата торцевой поверхностью присоединения торцевой поверхности корпуса, причем между корпусом датчика давления и процессным присоединением расположено уплотнительное кольцо, содержащее эластомерный материал и герметизирующее щель между торцевой поверхностью присоединения и торцевой поверхностью корпуса.

2. Датчик по п.1, характеризующийся тем, что граничащие с щелью участки торцевой поверхности присоединения и торцевой поверхности корпуса расположены в одной плоскости.

3. Датчик по п.1 или 2, характеризующийся тем, что его корпус образует в своем внутреннем пространстве сенсорную камеру, в которой расположен сенсор.

4. Датчик по п.1, характеризующийся тем, что его корпус имеет на граничащем с торцевой поверхностью корпуса монтажном участке, в основном, осесимметричную или, по меньшей мере, в отдельных местах цилиндрически-симметричную конструкцию.

5. Датчик по п.4, характеризующийся тем, что первый отрезок боковой поверхности монтажного участка корпуса датчика давления, граничащий с торцевой поверхностью корпуса, имеет полусферическое первое уплотнительное гнездо, которое поддерживает уплотнительное кольцо аксиально и радиально.

6. Датчик по п.5, характеризующийся тем, что первое уплотнительное гнездо имеет преимущественно первый, лишенный заусенцев переход к торцевой поверхности корпуса

7. Датчик по п.6, характеризующийся тем, что первое уплотнительное гнездо имеет второй переход ко второму отрезку боковой поверхности монтажного участка, граничащему на обращенной от торцевой поверхности стороне уплотнительного гнезда.

8. Датчик по п.7, характеризующийся тем, что в плоскостях вдоль оси цилиндра первое уплотнительное гнездо выполнено вогнутым, а первый и второй переходы выполнены выпуклыми.

9. Датчик по п.7 или 8, характеризующийся тем, что максимальный радиус второго отрезка боковой поверхности больше максимального радиуса первого перехода.

10. Датчик по п.7 или 8, характеризующийся тем, что торцевая поверхность присоединения имеет на своем обращенном к отверстию процессного присоединения внутреннем краю третий, лишенный заусенцев выпуклый переход ко второму полу сферическому уплотнительному гнезду, которое переходит в цилиндрическую внутреннюю стенку отверстия процессного присоединения.

11. Датчик по п.10, характеризующийся тем, что минимальный радиус отверстия процессного присоединения, проходящий в зоне третьего перехода, меньше максимального радиуса второго перехода и больше максимального радиуса первого перехода.

12. Датчик по п.11, характеризующийся тем, что разность между минимальным радиусом отверстия процессного присоединения и максимальным радиусом первого перехода составляет не более половины толщины материала уплотнительного кольца, предпочтительно не более трети и особенно предпочтительно не более четверти толщины материала уплотнительного кольца.

13. Датчик по п.11, характеризующийся тем, что разность между минимальным радиусом отверстия процессного присоединения и максимальным радиусом первого перехода составляет не менее одной шестой толщины материала уплотнительного кольца, предпочтительно не менее одной пятой толщины материала уплотнительного кольца.

14. Датчик по п.11, характеризующийся тем, что минимальный радиус кривизны на первом и третьем выпуклых переходах составляет не более одной шестой и предпочтительно не более одной восьмой толщины материала уплотнительного кольца.

15. Датчик по п.11, характеризующийся тем, что минимальный радиус кривизны на первом и третьем выпуклых переходах составляет не менее одной двенадцатой и предпочтительно не менее одной десятой толщины материала уплотнительного кольца.

16. Датчик по п.1, характеризующийся тем, что процессное присоединение и корпус датчика давления имеют соответствующие друг другу резьбовые участки, так что корпус датчика давления выполнен с возможностью ввинчивания в процессное присоединение.



 

Похожие патенты:

Изобретение относится к микроэлектронному приборостроению, в частности к датчикам плотности. .

Изобретение относится к электронной технике, в частности к технологии изготовления датчиков, и может быть использовано при создании малогабаритных металлопленочных датчиков механических величин, работоспособных в широком диапазоне рабочих температур (-196 - +150)°С.

Изобретение относится к датчику давления или к элементу, чувствительному к давлению, с датчиком давления. .

Изобретение относится к экспериментальной технике, в частности к способам измерения давления продуктов сгорания порохов и пиротехнических составов в замкнутых объемах, имеющих минимальные габариты.

Изобретение относится к изготовлению мембран для упругочувствительных элементов, и может найти применение в области неразрушающего контроля в энергетике, химической промышленности и других отраслях.

Изобретение относится к устройствам для изменения упругих характеристик мембран и может быть использовано в датчиках давления для измерения давления, разряжения, разности давлений жидкостных и газовых сред.

Изобретение относится к измерительной технике, а именно к технологии изготовления пленочных контактных датчиков, закрепляемых на поверхности измеряемого объекта, и может быть использовано для повышения параметрической надежности датчиков и точности контрольно-измерительной техники, работающей в условиях высокоскоростных механических нагружений.

Изобретение относится к области технологии изготовления средств контрольно-измерительной техники и направлено на разработку датчиков порогового давления. .

Изобретение относится к технологии точного приборостроения и может быть использовано в технологических процессах изготовления датчиков. .

Изобретение относится к измерительной технике, а именно к датчику давления среды в емкости с эластичными стенками. .

Изобретение относится к датчику для управления технологическим процессом, в частности оно относится к уплотнению

Изобретение относится к области машиностроения, а именно к датчикам, обеспечивающим контроль давления в условиях воздействия высоких температур, вибрации и контакта с агрессивными средами, и затрагивает проблему закрепления мембраны в корпусе датчика

Изобретение относится к гидравлическому датчику давления

Изобретение относится к технологии изготовления пленочных датчиков порогового давления и направлено на улучшение показателей надежности средств контрольно-измерительной техники, работающей в условиях высокоскоростных механических нагружений, и может быть использовано для изготовления контактных тонкопленочных датчиков, закрепляемых непосредственно на поверхности измеряемых объектов

Изобретение относится к измерительной технике, а именно к интегральным преобразователям давления

Изобретение относится к средствам измерения давления и может быть использовано в условиях воздействия высоких давлений и контакта с агрессивными средами. Сущность: корпус датчика выполнен из трех частей: нижней (1), верхней (2) и средней (3). Нижняя (1) часть, выполненная из тугоплавкого инертного металла, имеет форму цилиндра с фигурной наружной поверхностью, сквозным цилиндрическим отверстием (5) в центре и цилиндрическим углублением (6) сверху. К нижней (1) части корпуса неразъемно прикреплена снаружи чувствительная мембрана (4). Верхняя (2) часть корпуса, выполненная из стали, имеет форму тонкостенного стакана с толстым днищем (7). Днище (7) стакана имеет в центре цилиндрическое отверстие (8) того же диаметра, что и отверстие (5) в нижней (1) части корпуса. К верхней (2) части корпуса датчика приварен сенсорный блок (9) с чувствительным элементом (10). Под чувствительным элементом (10) имеется цилиндрическая полость (11), заполненная разделительной кремний-органической жидкостью (12). Средняя (3) часть корпуса, размещенная в полости стакана верхней (2) части и в отверстии (5) нижней части, выполнена из тугоплавкого инертного металла. Средняя (3) часть выполнена в форме болта с ножкой (16) внизу и головкой (13) вверху, имеющего узкое цилиндрическое отверстие (14) вдоль продольной оси. Узкое цилиндрическое отверстие (14) совместно с узким каналом (15) соединяет чувствительную мембрану (4) и сенсорный блок (9). Вокруг ножки (16) болта выполнена кольцевая проточка (17) под расположенное в ней уплотняющее резиновое кольцо (18). Технический результат: повышение надежности работы датчика в агрессивных средах при уменьшении его веса и габаритов. 3 з.п. ф-лы, 1 ил.

Настоящее раскрытие относится к обнаружению давления, а именно к системам и способам измерения давления жидкости внутри одноразового набора для внутривенного вливания, соединенного с насосом для подачи жидкости. Заявленная система включает бесконтактную систему обнаружения давления для измерения как положительного, так и отрицательного давлений жидкости в пределах изолированного пути прохождения жидкости с использованием камеры, включенной в состав изолированного пути прохождения и соединенной с насосом для подачи жидкости, кассету, сконфигурированную для соединения с насосом для подачи жидкости и способ измерения давления жидкости в одноразовом наборе для внутривенного IV вливания, соединенном с насосом для подачи жидкости. При этом бесконтактная система обнаружения давления для измерения как положительного, так и отрицательного давлений жидкости в пределах изолированного пути прохождения жидкости с использованием камеры, включенной в состав изолированного пути прохождения и соединенной с насосом для подачи жидкости, содержит основу датчика, соединенную с насосом и имеющую, по меньшей мере, одно средство обнаружения, являющееся неподвижным относительно основы датчика, причем средство обнаружения сконфигурировано для генерирования сигнала измеряемого параметра, указывающего переменную величину обнаруживаемого измерения, схему измерения, электрически соединенную со средством обнаружения для приема сигнала измеряемого параметра, камеру или корпус, сконфигурированный для прикрепления к основе датчика, камеру, имеющую: впускное отверстие для жидкости и выпускное отверстие для жидкости, и подвижный элемент, сконфигурированный для перемещения с изменениями давления жидкости внутри камеры и тем самым вызова изменения переменной величины обнаруживаемого измерения, без контакта со средством обнаружения, причем величина перемещения подвижного элемента связана с величиной изменения давления жидкости. Технический результат заключается в обеспечении системы обнаружения давления для измерения давления жидкости внутри кассеты, которая является как точной, так и экономичной. 3 н. и 31 з.п. ф-лы, 9 ил.

Заявленный способ относится к технологии изготовления многослойных пленочных контактных датчиков порогового давления и может быть использован при изготовлении многослойных контактных датчиков порогового давления, закрепляемых на поверхности измеряемых объектов. Техническим результатом заявленного способа является избежание таких эффектов, как скручивание, коробление и смещение токопроводящего рисунка на разных слоях датчика относительно друг друга. Способ изготовления многослойного пленочного контактного датчика включает выполнение, по крайней мере, двух слоев, один из которых изготовлен из гибкого диэлектрического материала, чувствительного к давлению, на котором формируют второй слой из токопроводящего элемента методом фотохимического травления с использованием комплекта фотошаблонов, последующую сборку элемента датчика с получением пакета из чередующихся диэлектрических и токопроводящих слоев, соединение элементов в пакет в условиях термокомпрессионной сварки. При этом для обжатия сборки используют два вспомогательных упругих элемента, которые после снятия давления удаляют и окончательно формируют контур датчика. В качестве одного из вспомогательных упругих элементов используют металлическую сетку, проложенную с двух сторон пленкой из термореактивного полимера. Причем со стороны, обратной пакету, перед пленкой из термореактивного полимера располагают пленку из термопластичного полимера. Для изоляции контактов на токопроводящих слоях разных уровней датчика используют термопластичный полимер, который прокладывается между термореактивными пленками, ламинированными термопластичным полимером, перед термокомпрессионной сваркой и удаляется перед окончательным формированием контура датчика. 7 з.п. ф-лы, 1 ил.
Наверх