Сплав для раскисления и химической закупорки жидкой стали

Изобретение относится к области черной металлургии, в частности к ферросплавному производству. Сплав содержит следующие ингредиенты, мас.%: железо 5,0-50,0, кремний 5,0-15,0, алюминий 40,0-60,0, углерод, марганец, хром и титан 8,0-10,0, сера, фосфор 0,05-0,10, медь, цинк, олово, свинец, сурьма, висмут и мышьяк 5,0-8,0, при этом сплав содержит последовательный ряд тройных стабильных интерметаллидов на основе алюминия, содержащих железо и кремний при следующем соотношении ингредиентов, мас.%: Fe:Si:Al=(2-4):1:(4-6). Повышают эффективность обработки жидкой стали при раскислении и химической закупорки сплавом для раскисления и химической закупорки жидкой стали путем оптимизации его состава. 1 з.п. ф-лы, 1 табл.

 

Изобретение относится к области черной металлургии, в частности к производству ферросплавов и лигатур для обработки жидкой стали.

Известно, что ООО «Фирма «Уникон» организовала промышленное производство сплавов вторичного силикоалюминия, содержащих 10-30% Si, 30-75% Al для раскисления полу- и спокойных сталей и химической закупорки слитков кипящих сталей (патент Украины 60931 А, МПК С21С 7/06, опубл. 15.10.2003).

Кроме того, известно изобретение по патенту Китайской Народной Республики CN1049528, МПК С21С 7/06, опубл. 1991-02-07, в котором сплавы ферросиликоалюминия регламентируются по железу 5-45%, кремнию 15-30% и алюминию 40-75%.

Также известны промышленные сплавы ферросиликоалюминия для комплексного раскисления стали, содержащие основные легирующие элементы 30-75% Si и 10-45% Al, регламентируются суммой Si+Al, равной содержанию кремния в марочном составе ферросилиция, под названием фералсит [1], принятый за наиболее близкий аналог.

Итак, в качестве наиболее близкого аналога выбран сплав для раскисления и химической закупорки жидкой стали, содержащий железо, кремний, алюминий, медь и углерод [1].)

Технология рафинирования стали предусматривает последовательный ряд операций по обработке жидкого металла: предварительное и окончательное раскисление металла, раскисление покровного шлака и отдельная операция - химическая закупорка слитков кипящей стали. На каждой операции применяют различные марки сплавов: высококремнистые сплавы для предварительного раскисления, высокоалюминиевые - для раскисления шлака и химзакупоривания, унифицированные сплавы (Si≈Al) - для окончательного раскисления. Кроме того, плотность сплавов для обработки стали должна быть выше плотности жидкого шлака (3,0-3,5 г/см3) и равна или меньше - для раскисления шлака.

В связи с этим промышленные сплавы ферросиликоалюминия пригодны только для раскисления металла, как сплавы аналога и наиболее близкого аналога.

Общим недостатком аналогов и наиболее близкого аналога является также и отсутствие строгой регламентации состава по маркам сплава, которая должна учитывать не только вышеперечисленные требования, но и отвечать определенному структурно-химическому состоянию, обеспечивающему стабильность жидких и твердых сплавов и, следовательно, эффективность при обработке стали.

В основу изобретения поставлена задача повышения эффективности обработки жидкой стали при раскислении и химической закупорки сплавом для раскисления и химической закупорки жидкой стали путем оптимизации его состава, удовлетворяющего требованиям необходимости (заданной плотности) и достаточности (стабильности в жидком и твердом состояниях). Оптимизация состава сплавов основана на структурно-химическом анализе металлургических фаз в жидком и твердом состоянии [2] с помощью полигональной диаграммы состояния системы железо-кремний-алюминий, построенной новым графо-аналитическим методом [3]. На основании проведенного анализа оптимальные сплавы для раскисления и химической закупорки жидкой стали на основе алюминия отвечают области гомогенности тройных стехиометрических интерметаллидов при заданных соотношениях Fe:Si:Al.

Поставленная задача решается тем, что в сплав для раскисления и химической закупорки жидкой стали, содержащий железо, кремний, алюминий, медь и углерод, согласно изобретению, дополнительно содержит марганец, хром титан, серу, фосфор, цинк, олово, свинец, сурьму, висмут и мышьяк при следующем содержании ингредиентов, мас.%:

Железо5,0-50,0
Кремний5,0-15,0
Алюминий40,0-60,0
Углерод, марганец, хром и титан8,0-10,0
Сера и фосфор0,05-0,10
Медь, цинк, олово, свинец, сурьма, висмут и мышьяк5,0-8,0,

при этом сплав содержит последовательный ряд тройных стабильных интерметаллидов на основе алюминия, содержащих железо и кремний.

Кроме того, каждый тройной стабильный интерметаллид на основе алюминия, входящий в последовательный ряд, имеет следующее соотношение компонентов:

Fe:Si:Al=(2-4):1:(4-6).

Таким образом, новая совокупность ограничительных и отличительных признаков обеспечивает достижение нового технического результата - выбор оптимального состава сплава для раскисления и химической закупорки жидкой стали, удовлетворяющего требованиям необходимости (заданной плотности) и достаточности (стабильности в жидком и твердом состояниях), что обеспечивает повышение эффективности обработки жидкой стали при раскислении и химической закупорке сплавами для раскисления и химической закупорки жидкой стали.

Последовательный ряд таких интерметаллидов имеет вид: FeSiAl6(ФC10A65)→FeSiAl4(ФC15A55)→Fe2SiAl6(ФC10A50)→Fe2SiAl4(ФC10A40) - в скобках указана условная маркировка сплавов, допускающая предельные интервалы концентраций легирующих элементов ±3,0-5%.

В таблице 1 приведены состав и свойства сплавов-аналогов, наиболее близкого аналога и сифераля, сопоставительный анализ которых свидетельствует о более узких пределах колебаний плотности (3,83-4,97 г/см3 против 2,88-5,49 г/см3) и температур плавления (900-1150°С против 830-1310°С), что способствует повышению технологической эффективности сплавов для раскисления и химической закупорки жидкой стали.

Таким образом, оптимальные составы стабильных сплавов для раскисления и химической закупорки жидкой стали отвечают требованиям необходимости и достаточности новой совокупности признаков для повышения эффективности использования заявленного изобретения.

Таблица 1.

Состав и физико-химические свойства сплавов
Марка сплаваТип интерметаллидовХимический состав, мас.%% S, PCu, Zn, Sn, Pb, Sb, Bi, AsFe:Si:Alρ, г/см3Тпл, °С
FeSiAlС, Mn, Cr, Ti
1234567891011
Силикоалюминий
СА 12-30-Ост.10-1530-35----5,491310
СА 12-35-Ост.10-1535-40--_5,251270
СА 12-40-Ост.10-1540-45----4,981270
СА 18-45-Ост.15-2045-50----4,461130
СА 18-50-Ост.15-2050-55----4,121060
СА 18-55-Ост.15-2055-60---3,87980
СА 25-60-Ост.20-3060-65----3,29910
СА 25-65-Ост.20-3065-70----3,02870
СА 25-70-Ост.20-3070-75----2,88830
Ферросиликоалюминий-5-4515-3040-75------
Фералсит-Ост.10-3030-75С не больше 2,0-Cu не больше 2,5---
Сплав для
раскис. и
хим.закупорки жид. стали*)
ФС15А55FeSiAl429,214,656,28,50,075,52:1:44,151000
ФС10А55Fe2SiAl637,19,353,68,70,087,04:1:64,561100
ФС10А40Fe2SiAl445,211,343,510,00,108,04:1:44,971150
*) Интервал предельных концентраций составляет 3-5%.

Литература

1. Гасик М.И., Лякишев Н.П., Емлин Б.И. Теория и технология производства ферросплавов. - М.: Металлургия, 1988 - 522 с.

2. Белов Б.Ф., Троцан А.И., Харлашин П.С. Структуризация металлургических фаз в жидком и твердом состояниях. Изв. ВУЗов, 4М. 2002, №4, с.70-75.

3. Белов Б.Ф., Троцан A.I., Харлашин П.С. та iн. Свiдоцтво про державну ре∈страцiю прав автора на твip. ПА №2825 вiд 29.02.2002 р. Методика побудови полiгональних дiаграм стану бiнарних металургiйних систем.

1. Сплав для раскисления и химической закупорки жидкой стали, содержащий железо, кремний, алюминий, медь и углерод, отличающийся тем, что он дополнительно содержит марганец, хром, титан, серу, фосфор, цинк, олово, свинец, сурьму, висмут и мышьяк при следующем содержании ингредиентов, мас.%:

Железо5,0-50,0
Кремний5,0-15,0
Алюминий40,0-60,0
Углерод, марганец, хром и титан8,0-10,0
Сера, фосфор0,05-0,10
Медь, цинк, олово, свинец, сурьма, висмут и мышьяк5,0-8,0,

при этом сплав содержит последовательный ряд тройных стабильных интерметаллидов на основе алюминия, содержащих железо и кремний.

2. Сплав по п.1, отличающийся тем, что каждый тройной стабильный интерметаллид на основе алюминия, входящий в последовательный ряд, имеет следующее соотношение компонентов:

Fe:Si:Al=(2-4):1:(4-6).



 

Похожие патенты:
Изобретение относится к области металлургии литейных сплавов, в частности антифрикционных сплавов на основе алюминия, преимущественно для деталей, работающих в условиях трения скольжения.

Изобретение относится к области цветной металлургии, а именно к сплавам на основе алюминия системы алюминий - медь - магний. .
Изобретение относится к области металлургии, а именно к сплавам на основе алюминия системы алюминий-медь-магний. .

Изобретение относится к высокопрочным сплавам пониженной плотности на основе системы алюминий-медь-литий и может быть использовано в авиакосмической, судостроительной и автомобильной отраслях промышленности.

Изобретение относится к металлургии, в частности к жаропрочным деформируемым сплавам на основе алюминия, используемым в качестве конструкционного материала в греющихся частях летательных аппаратов, например в деталях двигателя или в элементах деталей обшивки сверхзвуковых самолетов.

Изобретение относится к области металлургии, а именно к Al-Li сплавам пониженной плотности, предназначенным для применения в качестве конструкционных материалов в авиакосмической технике.

Изобретение относится к порошковой металлургии, в частности к материалам, предназначенным для изготовления деталей точных приборов. .

Изобретение относится к сплавам на основе алюминия, используемым для изготовления износостойких деталей, работающих при температуре до 400°С. .
Изобретение относится к области металлургии, в частности к составам деформируемых сплавов на основе алюминия, которые могут быть использованы в авиастроении, автомобильной промышленности.
Изобретение относится к области цветной металлургии, в частности к составам литейных сплавов на основе алюминия, которые могут быть использованы в авиастроении. .

Изобретение относится к алюминиевым сплавам, а именно к изготовлению продуктов с большим и малым поперечным сечением. .
Изобретение относится к области металлургии сплавов на основе алюминия, в частности к сплавам системы алюминий-цинк-магний-медь, используемых в качестве конструкционных материалов для изготовления деталей газовых центрифуг, используемых в атомной энергетике, а также в качестве конструкционных материалов в электротехнике, авиа- и ракетостроении.

Изобретение относится к сплавам типа Al-Zn-Mg, а именно к сплавам, предназначенным для сварных конструкций, таких как конструкции, используемые в области морского строительства, при изготовлении кузовов автомобилей, промышленных транспортных средств и неподвижных или подвижных резервуаров.

Изобретение относится к производству изделий из высокоустойчивого к повреждениям алюминиевого катаного сплава. .
Изобретение относится к области металлургии, в частности к составам деформируемых сплавов на основе алюминия, которые могут быть использованы в автомобилестроении.
Изобретение относится к металлургии, в частности к деформируемым сплавам на основе алюминия, которые могут быть использованы в авиастроении и автомобильной промышленности.
Изобретение относится к металлургии, в частности к составам деформируемых сплавов на основе алюминия, которые могут быть использованы в авиастроении и автомобильной промышленности.
Изобретение относится к области металлургии, а именно к получению сплавов на основе алюминия, предназначенных для изготовления штамповок, в частности штамповок дисков автомобильных колес.

Изобретение относится к области производства деталей обшивки кузовов транспортных средств, таких как крылья, двери, задние двери, капоты или крыши, устанавливаемых на стальной конструкции.
Наверх