Способ выделения углеводородов c3+ из попутных нефтяных газов

Изобретение относится к способу выделения углеводородов С3+ из попутных нефтяных газов путем противоточной абсорбции абсорбентом с последующей десорбцией абсорбированной фракции С3+, и возвратом регенерированного после десорбции абсорбента в абсорбер, характеризующемуся тем, что используют попутные нефтяные газы с давлением 8-20 атм, и абсорбцию проводят при температуре 8-40°С, при этом выходящий из абсорбера насыщенный абсорбент нагревают до 280-350°С и подают на десорбцию, которую проводят при давлении 15-19 атм, а в качестве абсорбента используют тяжелые компоненты исходных попутных газов. Применение данного способа позволяет упростить процесс, т.к. не требуется использование внешнего хладоагента (вода, хладоноситель) и привозного абсорбента. 2 з.п. ф-лы,1 фиг., 2 табл.

 

Изобретение относится к области подготовки нефти и транспортировки и утилизации попутных нефтяных газов.

При подготовке нефти к транспортировке производится ее отделение от сопутствующего ей газа. Этот газ подается на газоперерабатывающие заводы (ГПЗ) для разделения на компоненты и фракции в зависимости от потребности. Для этого газ должен находиться под определенным давлением (как правило не ниже 10 атм), чтобы он мог быть доставлен до ГПЗ. Минимальное давление определяется удаленностью ГПЗ от узла подготовки нефти, который в свою очередь находится вблизи места добычи.

В том случае, если достаточно близко от узла подготовки нет ГПЗ или количество газа таково, что тянуть для него газопровод нецелесообразно, газ отправляется на факел. В отдельных случаях он частично используется в газотурбинных установках, вращающих электрогенераторы. Однако и для этих случаев большое содержание углеводородов С3+ в горючем газе является вредным.

Таким образом, возникает необходимость переработки попутного газа на месте подготовки нефти к транспортировке.

Для переработки попутных нефтяных газов с целью выделения углеводородов С3 и более тяжелых известно несколько методов: компрессионный, абсорбционный, адсорбционный и низкотемпературная конденсация и ректификация (НТКР) [Справочник нефтехимика, т.1, Химия, Л., 1972 г., стр.50].

Все эти схемы требуют высокого давления (до 50 атм), наличия охлаждающей воды, греющего водяного пара и хладоагента с температурой минус 25°С [Справочник нефтехимика, т.1, Химия, Л., 1972 г., стр.50-53].

Реализация этих мероприятий требует больших капитальных затрат: система градирен для получения охлаждающей оборотной воды с подпиткой ее для компенсации потерь; система водоподготовки и паровых котлов для генерации греющего пара; холодильные циклы с компрессорами, водяными холодильниками и сопутствующим им оборудованием. Однако в местах подготовки нефти к транспортировке, как правило, кроме электроэнергии и собственно попутного газа других энергоносителей нет.

Наиболее широкое распространение получили абсорбционные установки с тремя колоннами. Абсорбция ведется при высоком давлении (30-70 атм), десорбция - при низком (2-7 атм). В качестве абсорбента используются фракции углеводородов С710 (бензины) [Энциклопедия газовой промышленности (под редакцией Басниева К.С.), АО «ТВАНТ», 1994 г., с.340; Гудков С.Ф., Переработка углеводородов природных и попутных газов, ГНТИ нефтяной и горно-топливной литературы, М., 1960 г.].

Недостатком этой схемы является необходимость иметь исходный газ при достаточно высоком давлении, постоянная подпитка системы абсорбентом в связи с его потерями, достаточно громоздкая схема установки.

Наиболее близким к предлагаемому изобретению является способ разделения углеводородных газов путем низкотемпературной абсорбции [авт. св. СССР №882985, кл. С07С 7/12, 1981 г.].

Способ разделения углеводородных газов C1-C5, в частности выделения углеводородов С3+ из попутных нефтяных газов, заключается в противоточной абсорбции абсорбентом, в качестве которого используют керосин, с последующей десорбцией абсорбированной фракции С3+ и возвратом регенерированного после десорбции абсорбента в абсорбер.

В соответствии с этим способом углеводородный газ с температурой 15-35°С под давлением 50-70 атм подают в абсорбер, орошаемый керосином. Сверху абсорбера уходит «сухой» газ, а из куба его - насыщенный тяжелыми углеводородами С3+ керосин. Насыщенный тяжелыми углеводородами С3+ керосин поступает в десорбер, где за счет сброса давления до 1-3 атм происходит выделение абсорбированных углеводородов, а керосин возвращают насосом на орошение абсорбера. Далее выделившиеся в десорбере углеводороды С3+ охлаждают до температуры (-50÷-80°С) и направляют на фракционирование.

В данном способе имеется несколько недостатков:

- необходимость иметь газ при высоком давлении 50-70 атм; если газ находится при более низком давлении, то воспользоваться этим способом нельзя;

- необходимость иметь привозной керосин или другой абсорбент;

- предлагается иметь давление в десорбере ниже давления в абсорбере; это условие может выполняться только при высоком давлении в абсорбере; в противном случае в абсорбере будет поглощаться мало компонентов исходного газа;

- одинаковая температура в абсорбере и десорбере может быть (для режимов достаточно хорошего извлечения компонентов С3+ из исходного газа) только при условии низкого давления в десорбере;

- низкое давление в десорбере требует дальнейшего использования достаточно низкого холода (-50÷-80°С).

Задачей настоящего изобретения является разработка способа выделения углеводородов С3+ из попутных нефтяных газов, позволяющего проводить указанное выделение, используя попутные нефтяные газы, имеющие низкое давление (8-20 атм), и не требующего внешнего хладоагента (вода, хладоноситель) и привозного абсорбента.

Поставленная задача решается предлагаемым способом выделения углеводородов С3+ из попутных нефтяных газов, который осуществляется путем противоточной абсорбции абсорбентом с последующей десорбцией абсорбированной фракции С3+, и возвратом регенерированного после десорбции абсорбента в абсорбер. Способ отличается тем, что используют попутные нефтяные газы с давлением 8-20 атм, и абсорбцию проводят при температуре 8-40°С, при этом выходящий из абсорбера насыщенный абсорбент нагревают до 280-350°С и подают на десорбцию, которую проводят при давлении 15-19 атм, а в качестве абсорбента используют тяжелые компоненты исходных попутных газов, (например, фракцию С913 или С713 - смотри примеры).

Причем регенерированный после десорбции абсорбент охлаждают, используя в качестве хладоагента атмосферный воздух или атмосферный воздух и поток нефти, от которой отделен попутный нефтяной газ, а газовая фаза, образующаяся при десорбции, возвращается в абсорбер.

На чертеже представлена схема выделения углеводородов С3+ из попутного газа, на которой изображены позиции следующих аппаратов, а также потоки, проходящие через эти аппараты:

1 - абсорбер;

2, 8, 10, 17, 18 - насосы;

3, 12 - теплообменники;

4 - десорбер;

11, 15 - воздушные холодильники-конденсаторы;

16 - флегмовые емкости;

13 - дроссели;

9 - нагревательная печь;

14 - куб для регенерации абсорбента.

I - попутный нефтяной газ;

II - «сухой» газ;

III - регенерированный абсорбент;

IV - насыщенный абсорбент;

V - товарная фракция углеводоров С3+ (ШФЛУ - широкая фракция легких углеводородов);

VI - рецикловый газовый поток;

VII - исходная нефть;

VIII - возвратная нефть.

Исходный попутный нефтяной газ (I) вместе с рецикловым газовым потоком (VI) при давлении ˜8 атм поступают в абсорбер 1, который орошается регенерированным абсорбентом (III). Сверху абсорбера уходит «сухой» газ (II), снизу - насыщенный абсорбент (IV). Температура вверху абсорбера ˜8-30°С, в кубе его ˜15-40°С. Насыщенный абсорбент насосом (2) через теплообменник (3), где он нагревается до 280-350°С, поступает в десорбер (температура в кубе десорбера 280-350°С) (4), работающий при давлении 15-19 атм. В десорбере происходит отпарка углеводородов, растворенных в абсорбенте. Отпарка происходит за счет подогрева и частичного испарения кубового продукта десорбера в нагревательной печи (9).

Для улучшения теплообмена в нагревательной печи кубовый продукт десорбера прокачивается через печь насосом (8). Парогазовая смесь с верха десорбера (4) проходит воздушный холодильник (5), где происходит частичная конденсация потока при температуре 35-45°С. Парожидкостная смесь после воздушного холодильника (5) поступает во флегмовую емкость (6). Жидкая фаза из нее насосом (10) подается в десорбер в качестве орошения, а балансовое ее количество в виде фракции углеводородов С3+ (V) выводится в качестве товарного продукта. Газовая фаза из флегмовой емкости (6) проходит дроссель (7), где происходит сброс давления, и в виде рециклового газового потока (VI) возвращается в абсорбер.

Регенерированный абсорбент из куба десорбера (4) проходит нагревательный элемент куба для регенерации абсорбента (14) и теплообменник (3), где охлаждается, нагревая питание десорбера. Затем происходит дальнейшее охлаждение абсорбента в воздушном холодильнике (11) и в теплообменнике (12) за счет нефти (VII), приходящей в узел ее подготовки. После сброса давления на дросселе (13) абсорбент (III) поступает в абсорбер (1).

Для запуска схемы в качестве абсорбента используется керосин. В дальнейшем он заменяется компонентами (С913 или С713), содержащимися в исходном газе (см. примеры). При необходимости вывода из абсорбента тяжелых компонентов и смолистых веществ, могущих образовываться в печи (9), часть абсорбента периодически выводится в куб регенерации (14), снабженный небольшой отпарной колонной и кипятильником. Пары абсорбента с верха отпарной колонны конденсируются в воздушном холодильнике (15). Жидкость собирается во флегмовой емкости (16) и в виде флегмы насосом (17) подается на орошение отпарной колонны куба для регенерации абсорбента (14). Балансовое количество этой жидкости возвращается в систему. Кубовый остаток из куба (14) насосом (18) откачивается в возвратную нефть (VIII).

Суть изобретения иллюстрируется следующими примерами.

Пример 1.

При летней эксплуатации установки:

- температура попутного газа и нефти +17°С,

- температура воздуха +27°С,

- давление в абсорбере (1) - 8 атм,

- давление в десорбере (4) - 19 атм,

- температура в абсорбере: верх - 28°С

куб - 37°С,

- температура в десорбере: верх - 74°С

куб - 340°С,

- расход попутного газа на установку - 23275 кГ/час,

- расход абсорбента на орошение абсорбера - 265 т/час,

- расход рециклового газа - 9400 кГ/час.

Составы и количества «сухого» газа, фракции углеводородов С3+ и тяжелых компонентов, получающиеся в таком режиме, приведены в таблице 1. Степень извлечения пропана составляет 66.1%, бутана - 86.6% и пентана - 85.0%. «Сухой» газ соответствует требованиям к топливу для газотурбинных установок.

Пример 2.

Выделение углеводородов С3+ из попутного газа, состава приведенного в примере 1, производится в зимнем режиме эксплуатации установки при следующих параметрах ее работы:

- температура попутного газа и нефти +2°С,

- температура воздуха ≤-10°С,

- давление в абсорбере (1) - 8 атм,

- давление в десорбере (4) - 15 атм,

- температура в абсорбере: верх - +8°С

куб - +17°С,

- температура в десорбере: верх - 63°С

куб - 320°С,

- расход попутного газа на установку - 23275 кГ/час,

- расход абсорбента на орошение абсорбера - 236 т/час,

- расход рециклового газа - 6585 кГ/час.

Составы и количества потоков приведены в таблице 2. Степень извлечения пропана - 99.5%, бутанов - 88.4%, пентанов - 98.8%.

Таким образом, предлагаемый способ позволяет выделять углеводороды С3+ из попутных нефтяных газов, имеющих низкое давление (8-20 атм), значительно упростить процесс, т.к. не требуется использование внешнего хладоагента (вода, хладоноситель) и привозного адсорбента.

Способ может быть использован также для выделения углеводородов С3+ из природных газов.

Таблица 1
Сводный материальный баланс (летний режим)
КомпонентыПоданоПолучено
Исходный газ«Сухой газ»ШФЛУТяжелые компоненты
% маскг/часмас.%кг/часмас.%кг/часмас.%кг/час
Азот6,191431,38,481429,80,021,5
Двуокись углерода1,16267,61,54260,00,127,7
Метан34,968075,647,608021,40,8352,1
Этан23,475422,529,214923,77,97497,6
Пропан21,164887,29,841658,951,743230,4
i-C4H102,87663,30,60100,58,99561,3
н-С4Н106,351466,21,07180,620,541282,5
i-C5H121,54356,10,2948,64,92306,9
н-С5Н121,41326,40,3253,94,37272,9
i-C6H140,0317,10,023,90,053,2
н-С6Н140,216849,60,22737,60,2515,3
Метилциклопентан0,04811,00,058,90,042,5
ц-С6Н120,07818,10,0915,50,0352,2
3-метилпентан0,07116,50,0610,50,106,3
i-C7H160,05212,00,069,70,010,5
н-C7H160,10724,80,1423,00,010,6
ц-С7Н140,08219,00,1119,20,0050,3
Толуол0,07617,50,1017,00,0030,2
н-C8H180,05211,80,0711,6
Ксилолы0,0317,10,047,2
i-C9H200,0102,30,0142,4
н-C9H200,0194,40,034,4
Ароматика C90,0051,20,0091,511,50,3
Углеводороды С100,00390,90,0071,211,50,3
Углеводороды С100,00431,00,0081,415,40,4
Углеводороды C120,00170,40,0050,815,40,4
Углеводороды С130,00130,30,011,546,21,2
ВСЕГО10023101,210016854,710062441002,6

Таблица 2
Сводный материальный баланс (зимний режим)
КомпонентыПоданоПолучено
Исходный попутный нефтяной газ«Сухой газ»ШФЛУТяжелые компоненты
мас.%кг/часмас.%кг/часмас.%кг/часмас.%кг/час
Азот6,191431,310,141429,60,021,7
Двуокись углерода1,16267,61,81252,10,1715,5
Метан34,968075,657,167996,60,8679,1
Азот23,475422,530,024194,813,421227,9
Пропан21,164887,20,1622,653,184865,2
i-С4Н102,87663,30,034,07,20659,2
н-C4H106,351466,20,079,315,931456,8
i-C5H121,54356,10,023,03,86353,3
н-С5Н121,41326,40,3253,93,51321,4
6Н140,0317,10,00070,10,076,8
Н-СбН140,216849,60,0050,60,5045,6
Метилциклопентан0,04811,00,00140,20,1110,4
ц-С6Н120,07818,10,0050,60,1614,7
3-метилпентан0,07116,50,00140,20,1715,5
i-С7Н160,05212,00,0050,80,1210,9
н-С7Н160,10724,80,0233,20,2724,60,80,04
ц-С7Н140,08219,00,0354,90,1917,00,90,05
Толуол0,07617,50,0354,90,1715,61,30,06
н-C8H180,05211,80,0537,40,065,16,00,28
Ксилолы0,0317,10,0456,20,010,97,00,33
i-C9H200,0102,30,022,10,0030,33,50,17
н-С9Н200,0194,40,02373,30,0029,10,43
Ароматика С90,0051,20,0070,94,00,198
Углеводороды С100,00390,90,0050,87,10,34
Углеводороды С110,00431,00,0030,3610,60,50
Углеводороды С120,00170,40,0010,1714,10,67
Углеводороды С130,00130,30,00080,1135,11,66
ВСЕГО10023101,310013951,11009147,61004,74

1. Способ выделения углеводородов С3+ из попутных нефтяных газов путем противоточной абсорбции абсорбентом с последующей десорбцией абсорбированной фракции С3+ и возвратом регенерированного после десорбции абсорбента в абсорбер, отличающийся тем, что используют попутные нефтяные газы с давлением 8-20 атм и абсорбцию проводят при температуре 8-40°С, при этом выходящий из абсорбера насыщенный абсорбент нагревают до 280-350°С и подают на десорбцию, которую проводят при давлении 15-19 атм, а в качестве абсорбента используют тяжелые компоненты исходных попутных газов.

2. Способ по п.1, отличающийся тем, что регенерированный после десорбции абсорбент охлаждают, используя в качестве хладоагента атмосферный воздух или атмосферный воздух и поток нефти, от которой отделен попутный нефтяной газ.

3. Способ по п.1, отличающийся тем, что при десорбции образуется газовая фаза, которая возвращается в абсорбер.



 

Похожие патенты:

Изобретение относится к усовершенствованному способу окисления алкана с С2 по C4 с получением соответствующих алкена и карбоновой кислоты, причем этот способ включает следующие стадии: (а) контактирование в окислительной реакционной зоне алкана, содержащего молекулярный кислород газа, необязательно соответствующего алкена и необязательно воды в присутствии по меньшей мере одного катализатора, эффективного при окислении алкана до соответствующих алкена и карбоновой кислоты, с получением первого потока продуктов, включающего алкен, карбоновую кислоту, алкан, кислород и воду; (б) разделение в первом разделительном средстве по меньшей мере части первого потока продуктов на газообразный поток, включающий алкен, алкан и кислород, и жидкий поток, включающий карбоновую кислоту; (в) контактирование упомянутого газообразного потока с раствором соли металла, способной селективно химически абсорбировать алкен, с получением жидкого потока, богатого химически абсорбированным алкеном; (г) выделение из раствора соли металла богатого алкеном потока.

Изобретение относится к технологии основного органического синтеза и может быть использовано при выделении тонкодисперсных твердых, смолистых и высококипящих побочных продуктов из реакционных газов пиролиза дихлорэтана в производстве винилхлорида, используемого для получения полимерных материалов, в частности полихлорвинила.

Изобретение относится к извлечению и повторному использованию этилена при получении винилацетата в паровой фазе. .
Изобретение относится к абсорбции алифатических, ароматических, непредельных углеводородов и их производных из газовой фазы. .

Изобретение относится к очистке изобутиленсодержащей фракции от азотсодержащих примесей, в частности к области подготовки С4-изобутиленсодержащих фракций, используемых в качестве алкилирующих агентов фенола в присутствии алюминийсодержащих катализаторов, и может быть использовано в нефтехимии.

Изобретение относится к способу разделения продуктов пиролиза дихлорэтана в производстве винилхлорида. .

Изобретение относится к способу выделения ароматических углеводородов из коксового газа. .

Изобретение относится к области добычи и переработки углеводородных газов, точнее к способу их очистки от серосодержащих соединений, диоксида углерода, воды и других компонентов, а также к области предотвращения гидратообразования при добыче и транспортировке сернистых природных газов, и может быть использовано в газодобывающей промышленности

Изобретение относится к технике по способу утилизации низкопотенциальных (низконапорных) углеводородных газов путем их сжатия и подготовки (извлечения примесей) для дальнейшего использования

Изобретение относится к горной, в первую очередь - угольной, промышленности и может использоваться для выделения метана из шахтной метановоздушной смеси и выдачи его потребителям в качестве товарного продукта

Изобретение относится к хранению и наливу испаряющихся продуктов и может быть использовано в нефтеперерабатывающей, химической промышленности и на базах хранения и перевалки кислородсодержащих октаноповышающих добавок - метил-трет-бутилового и этил-трет-бутилового эфиров

Изобретение относится к способу подготовки углеводородного газа, включающий ступенчатую сепарацию, охлаждение газа между ступенями сепарации, отделение углеводородного конденсата начальных ступеней сепарации, охлаждение его конденсатом последней низкотемпературной ступени сепарации и использованием в качестве абсорбента
Изобретение относится к способу извлечения ароматических углеводородов из коксового газа

Изобретение относится к способу очищения биогаза для извлечения метана, в котором компоненты, содержащиеся в биогазе, такие как диоксид углерода, соединения серы и аммиака, отделяются в ходе нескольких этапов процесса, и к соответствующей системе для осуществления способа. Способ осуществляют в три этапа очистки, на первом биогаз пропускают через очистную колонну (К1) в противоток подаваемой пресной воде, где диоксид углерода, сероводород, аммиак и другие органические водорастворимые вещества связываются в пресной воде, а метановый газ отбирают у головы очистной колонны (К1), на втором растворенный метан удаляют в первой испарительной колонне (К2), посредством добавления аэрирующего воздуха или аэрирующего воздуха и кислорода, и на третьем растворенный диоксид углерода удаляют во второй испарительной колонне (К3) посредством добавления аэрирующего воздуха, при этом отводят очищенный очистной раствор, подаваемый к очистной ступени (К1), и отработанный газ. Система содержит очистную колонну (К1), первую испарительную колонну (К2) и вторую испарительную колонну (К3), при этом очистная и испарительные колонны соединены последовательно, и основание второй испарительной колонны соединено с головой очистной колонны линией (04), несущей очистной раствор. Изобретение позволяет увеличить извлечение метана и снизить потребление энергии. 2 н. и 16 з.п. ф-лы, 2 ил., 2 пр.

Изобретение может быть использовано в газовой промышленности для подготовки углеводородного газа к однофазному транспорту. Способ включает очистку углеводородного газа от тяжелых компонентов путем абсорбции абсорбентом. Углеводородный газ подают в среднюю часть абсорбционной колонны, а абсорбент - наверх колонны и осуществляют нагрев нижней части и охлаждение верхней части абсорбционной колонны по всей высоте ее массообменных секций. Абсорбцию проводят при давлении 2,5-3,8 МПа абс. и при температуре верха колонны 5-25°С и температуре низа колонны 55-105°С. Изобретение позволяет повысить выход подготовленного газа, снизить кратность циркуляции абсорбента в 4 раза и снизить энергозатраты и металлоемкость оборудования. 1 ил.

Изобретение относится к способу выделения этилена полимеризационной чистоты из сухих газов каталитического крекинга, включающему предварительную очистку от примесей, компримирование и низкотемпературное охлаждение. Способ характеризуется тем, что газ после предварительной очистки и компримирования подают в абсорбционно-отпарную колонну, в верхней части которой происходит абсорбция легких углеводородов абсорбентом, а в нижней - отпаривается метано-водородная фракция, кубовый продукт абсорбционно-отпарной колонны разделяют в деэтанизаторе на этан-этиленовую фракцию и более тяжелую фракцию, которую затем подают в депропанизатор, в депропанизаторе выделяют пропан-пропиленовую фракцию и более тяжелую бутан-бутиленовую фракцию, бутан-бутиленовую фракцию используют в качестве абсорбента в абсорбционно-отпарной колонне, а этан-этиленовую фракцию из деэтанизатора подают в колонну выделения этилена, кубовым продуктом которой является этан, после чего этилен направляют в узел тонкой очистки с получением этилена полимеризационной чистоты, или этан-этиленовую фракцию из деэтанизатора направляют в узел разделения этан-этиленовой фракции действующей этиленовой установки. Для охлаждения системы используют пропиленовый холодильный цикл, а также обратные потоки этана из колонны выделения этилена и метано-водородной фракции из абсорбционно-отпарной колонны. Использование предлагаемого изобретения позволяет получать этилен полимеризационной чистоты на отдельной установке из газа, который раньше использовался в качестве топливного. 1 пр., 1 табл., 1 ил.
Наверх