Способ компенсации погрешности показаний датчика уровня топлива в топливном баке автомобиля и маршрутный компьютер для реализации способа

Изобретение относится к области автомобилестроения и может быть использовано в информационной системе автомобиля, включающей в себя аналоговый датчик уровня топлива (ДУТ) и маршрутный компьютер (МК), в состав которого входят АЦП, микроЭВМ с ПЗУ, орган управления, дисплей и драйвер дисплея. Сущность: в способе переводят МК в режим тарировки ДУТ, записывают в ПЗУ значение количества топлива, залитого в топливный бак, вносят изменения в тарировочную таблицу ДУТ. Далее выводят МК из режима тарировки, после чего формируют и выводят на экран дисплея характеристику ДУТ в виде графика. В состав МК входят АЦП, микроЭВМ с ПЗУ, дисплей с драйвером дисплея и, по меньшей мере, один орган управления. Кроме того, орган управления выполнен в виде энкодера, реализующего функции поворотного и нажимного переключателей, дисплей выполнен графическим, а в ПЗУ записана программа компенсации погрешности показаний ДУТ. Технический результат: повышение точности и удобства измерения количества топлива в топливном баке автомобиля. 2 н. и 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области автомобилестроения и может быть использовано в информационной системе автомобиля, включающей в себя аналоговый датчик уровня топлива (далее - ДУТ), установленный в топливном баке автомобиля, и маршрутный компьютер (далее - МК), в состав которого входят аналого-цифровой преобразователь (далее - АЦП), микроЭВМ с постоянным запоминающим устройством (далее - ПЗУ), по меньшей мере, один орган управления, выполненный в виде энкодера, и графический дисплей с драйвером графического дисплея.

Из уровня техники (см., например, патенты: US 5847335, МКИ6 Н01Н 9/00, публ. 08.12.1998 г.; US 6856261 B2, МКИ7 Н03М 1/22, Н01Н 19/00, публ. 15.02.2005 г.) известна конструкция энкодера - органа управления, реализующего функции поворотного и нажимного переключателей.

Известна (см., например, патент RU 2269749 C1, МПК G01F 23/36, публ. 10.02.2006 г., бюл. №4) и широко применяется в автомобилестроении конструкция потенциометрического ДУТ, включающая в себя рычаг, поплавок, соединенный с первым концом рычага, и потенциометр, ползунок которого механически соединен со вторым концом рычага. Погрешность измерения уровня топлива таким датчиком весьма высока и может достигать нескольких литров (см.: журнал «За рулем», №3/1997 г., стр.43).

Известен способ компенсации систематической погрешности показаний ДУТ описанной выше конструкции (см. В.В.Литвиненко, А.П.Майструк. Автомобильные датчики, реле и переключатели. Краткий справочник. М.: ООО «Книжное издательство «За рулем»», 2006 г., стр.22-23), заключающийся в изменении формы подвижного рычага датчика.

Из патента RU 19156 U1, МПК7 G01F 23/14, публ. 10.08.2001 г., известна информационная система автомобиля, включающая в себя аналоговый ДУТ, установленный в топливном баке автомобиля, и МК, в состав которого входят микроЭВМ с ПЗУ, орган управления и устройство отображения информации. В ПЗУ микроЭВМ хранится тарировочная таблица ДУТ в виде совокупности пар значений «сигнал датчика»/«количество топлива».

Для получения тарировочной таблицы ДУТ выполняют заливку в топливный бак автомобиля эталонных порций топлива, оцифровывают сигналы ДУТ в АЦП и формируют совокупность пар значений «сигнал датчика»/«количество топлива».

Из описания к патенту RU 2163005 C2, МПК7 G01F 9/00, 23/30, публ. патента 10.02.2001 г., известна информационная система автомобиля, включающая в себя потенциометрический ДУТ, установленный в топливном баке автомобиля, и МК, в состав которой входит АЦП, микроЭВМ с ПЗУ, дисплей с драйвером дисплея и орган управления.

Известен также (см.: Соснин Д.А., Яковлев В.Ф. Новейшие автомобильные электронные системы. М.: СОЛОН-Пресс, 2005 г., стр.100) способ работы информационной системы автомобиля, включающей в себя аналоговый ДУТ, АЦП, микроЭВМ с ПЗУ, дисплей с драйвером дисплея и орган управления, при котором в ПЗУ микроЭВМ записывают тарировочную таблицу ДУТ в виде совокупности пар значений «сигнал датчика»/«количество топлива», измеряют уровень напряжения сигнала датчика, подвергают его аналого-цифровому преобразованию и сравнивают полученное значение со значениями «сигнал датчика» из тарировочной таблицы. В случае совпадения полученной величины с одной из величин «сигнал датчика» тарировочной таблицы определяют соответствующее величине «сигнал датчика» значение «количества топлива» и отображают его на дисплее.

За прототип заявляемого способа взят способ компенсации погрешности показаний ДУТ, известный из патента RU 2163005 C2, МПК7 G01F 9/00, 23/30, публ. патента 10.02.2001 г. и реализованный в информационной системе автомобиля, включающей в себя аналоговый ДУТ и МК, в состав которого входит АЦП, микроЭВМ с ПЗУ и дисплей с драйвером дисплея.

Способ-прототип заключается в следующем.

В ПЗУ МК записывают тарировочную таблицу ДУТ в виде совокупности пар значений «сигнал датчика»/«количество топлива», а также величину предельно допустимого отклонения значения «сигнал датчика». Измеряют величину текущего сигнала ДУТ и оцифровывают измеренное значение в АЦП. Сравнивают полученное цифровое значение сигнала датчика с предельно допустимым и в случае, если текущее значение не превышает предельно допустимое, определяют с помощью тарировочной таблицы соответствующее полученному значение количества топлива и показывают его на экране дисплея. В противном случае считают, что измерение произведено с недопустимо большой погрешностью и отвергают результат текущего измерения.

За прототип заявляемого маршрутного компьютера взята конструкция маршрутного компьютера для автомобиля, известная из патента RU 2163005 C2 и включающая в себя АЦП, микроЭВМ с ПЗУ и дисплей с драйвером дисплея.

Задачами заявляемого изобретения является повышение точности и удобства измерения количества топлива в топливном баке автомобиля.

Указанные задачи решаются в способе компенсации погрешности показаний аналогового ДУТ, при котором записывают в ПЗУ микроЭВМ тарировочную таблицу датчика как совокупность пар значений «сигнал датчика»/«количество топлива», а для текущих измеренных значений, не совпадающих со значениями «сигнал датчика» тарировочной таблицы, соответствующее значение «количество топлива» получают вычислением по методу линейной интерполяции «количества топлива».

Задачи решаются в способе тем, что тарировочную таблицу уточняют в процессе эксплуатации автомобиля путем перевода МК в режим тарировки ДУТ и записи в ПЗУ новых пар значений «сигнал датчика»/«количество топлива».

Значение «количество топлива» для новой пары тарировочной таблицы может быть получено с помощью различных приемов. В частности, может заливаться в топливный бак автомобиля или удаляться из него известное количество топлива. Удаление известного количества топлива может выполняться путем слива или сжигания в цилиндрах двигателя автомобиля с подсчетом времени открытого состояния форсунки.

Для наиболее точного измерения выполняют следующие действия.

Заливают в топливный бак автомобиля известное количество топлива, переводят МК в режим тарировки ДУТ, записывают в ПЗУ новое известное текущее значение количества топлива, подтверждают с помощью органа управления ввод текущего значения топлива, измеряют величину текущего сигнала ДУТ, оцифровывают ее, формируют новую пару значений «сигнал датчика»/«количество топлива» тарировочной таблицы, записывают ее в ПЗУ микроЭВМ и выводят МК из режима тарировки ДУТ, а после внесения изменений в тарировочную таблицу производят перерасчет характеристики ДУТ на участках, примыкающих к новой паре значений, по команде пользователя формируют для вывода на экран дисплея уточненную характеристику ДУТ в виде графика, на осях абсцисс и ординат которой отложены значения «сигнал датчика» и «количество топлива», и отображают на экране дисплея график тарировки ДУТ.

Указанные задачи решаются также в маршрутном компьютере, в состав которого входят АЦП, микроЭВМ с ПЗУ и дисплей с драйвером дисплея.

Задачи решаются тем, что МК снабжен органом управления, выполненным в виде энкодера, реализующего функции поворотного и нажимного переключателей, дисплей выполнен графическим, а в ПЗУ записана программа компенсации погрешности показаний ДУТ, реализующая заявляемый способ.

Изобретение поясняется следующими чертежами.

На Фиг.1 изображена блок-схема информационной системы автомобиля, в которой возможна реализация заявляемого способа.

На Фиг.2 изображены характеристика ДУТ 1, построенная по двум точкам, и уточненная характеристика ДУТ 1, полученная в соответствии с заявляемым способом.

Заявляемый способ может быть реализован в информационной системе автомобиля, включающей в себя (см. Фиг.1) аналоговый датчик 1 уровня топлива и маршрутный компьютер 2 автомобиля, в состав последнего входят АЦП 3, микроЭВМ 4 с ПЗУ 5 и дисплей 6 с драйвером дисплея 7.

Для реализации способа с учетом наилучшего решения поставленных задач выполняют следующие изменения в конструкции МК.

МК снабжают органом 8 управления, который выполняют в виде энкодера, реализующего функции поворотного и нажимного переключателей.

С помощью энкодера при компенсации погрешности показаний ДУТ наиболее удобно реализуются операция выбора значений или режимов работы (путем поворота вала энкодера) и операция подтверждения выбора (путем осевого перемещения вала энкодера).

Дисплей 6 выполняют графическим. Благодаря этому становится возможным вывод на него изменяющейся графической информации и процесс компенсации погрешности показаний ДУТ становится наглядным. Одновременно с этим заменяют драйвер 7 для возможности управления графическим дисплеем 6.

В ПЗУ 5 МК 2 записывают программу компенсации погрешности показаний ДУТ, реализующую заявляемый способ.

Наличие в ПЗУ программы компенсации погрешности показаний ДУТ позволяет применить заявляемый способ любому пользователю, например владельцу автомобиля.

Способ в наилучшем случае реализации осуществляют выполнением следующей последовательности действий.

Записывают в ПЗУ 5 микроЭВМ 4 МК 2 тарировочную таблицу ДУТ 1 как совокупность нескольких пар значений «сигнал датчика»/«количество топлива». В простейшем случае в ПЗУ 5 заносят две пары значений «сигнал датчика»/«количество топлива».

Размещают автомобиль на ровной горизонтальной площадке.

Заводят и прогревают двигатель автомобиля для обеспечения стабильного питающего напряжения на АЦП 3 МК 2.

Заправляют топливный бак автомобиля известным количеством топлива.

Переводят МК 2 в режим тарировки ДУТ с помощью изменений положения вала энкодера 8.

Вводят с помощью энкодера 8 величину известного количества топлива.

Измеряют величину сигнала ДУТ 1.

Преобразуют в АЦП 3 сигнал ДУТ 1 в цифровую форму и получают новое значение «сигнал датчика».

Формируют новую пару значений «сигнал датчика»/«количество топлива» тарировочной таблицы и записывают ее в ПЗУ 5 микроЭВМ 4 МК 2.

Переводят МК 2 из режима тарировки ДУТ в рабочий режим с помощью изменения положения вала энкодера 8.

По команде пользователя, поданной с помощью энкодера 8, формируют для вывода на экран графического дисплея 6 уточненную характеристику ДУТ 1 в виде графика, на осях абсцисс и ординат которой отложены значения «сигнал датчика» и «количество топлива». При этом производят перерасчет характеристики ДУТ 1 на участках, примыкающих к новой паре значений.

Показывают на экране дисплея график тарировки ДУТ 1.

На Фиг.2 изображены исходная характеристика ДУТ, построенная по двум парам значений тарировочной таблицы, и характеристика, полученная в соответствии с заявленным способом.

Характеристика ДУТ 1 может быть представлена, например, в виде графика в системе координат, по оси абсцисс которой отложены значения напряжения в вольтах, U, В, соответствующие значениям «сигнал датчика», а по оси ординат отложены значения количества топлива F, л, в баке автомобиля.

Первоначально в ПЗУ 5 микроЭВМ 4 маршрутного компьютера 2 записана тарировочная таблица ДУТ 1 в виде двух пар значений «сигнал датчика»/«количество топлива». Одна из этих точек находится на оси абсцисс, что соответствует пустому баку, а вторая - на оси ординат, что соответствует полному баку автомобиля. График такой характеристики представлен прямой 1.

По мере ввода в ПЗУ в соответствии с предлагаемым способом новых пар значений тарировочной таблицы характеристика ДУТ приобретает вид ломаной линии 2.

Предлагаемое техническое решение делает возможным построение характеристики ДУТ с любой требуемой точностью, которая определяется количеством введенных в процессе эксплуатации автомобиля в ПЗУ МК новых пар значений тарировочной таблицы.

Благодаря наличию графического дисплея пользователь может наиболее просто определить участки характеристики ДУТ, нуждающиеся в уточнении.

1. Способ компенсации погрешности показаний датчика уровня топлива в информационной системе автомобиля, включающей в себя аналоговый датчик уровня топлива, установленный в топливном баке автомобиля, и маршрутный компьютер, в состав которого входят аналогово-цифровой преобразователь, микроЭВМ с постоянным записывающим устройством, графический дисплей с драйвером дисплея и, по меньшей мере, один орган управления, при котором записывают в постоянное запоминающее устройство микроЭВМ маршрутного компьютера тарировочную таблицу датчика уровня топлива как совокупность пар значений «сигнал датчика»/«количество топлива», отличающийся тем, что тарировочную таблицу датчика уровня топлива уточняют в процессе эксплуатации автомобиля путем перевода маршрутного компьютера в режим тарировки датчика уровня топлива и записи в постоянное запоминающее устройство маршрутного компьютера новой пары значений «сигнал датчика»/«количество топлива».

2. Способ по п.1, отличающийся тем, что для уточнения тарировочной таблицы заливают в топливный бак автомобиля известное количество топлива, после чего переводят маршрутный компьютер в режим тарировки датчика уровня топлива, записывают в постоянное запоминающее устройство микроЭВМ маршрутного компьютера новое известное текущее значение количества топлива, подтверждают с помощью органа управления ввод текущего значения топлива, измеряют величину текущего сигнала датчика уровня топлива, оцифровывают ее, формируют новую пару значений «сигнал датчика»/«количество топлива» тарировочной таблицы, записывают ее в постоянное запоминающее устройство микроЭВМ и выводят маршрутный компьютер из режима тарировки датчика уровня топлива, а после внесения изменений в тарировочную таблицу производят перерасчет характеристики датчика уровня топлива, по команде пользователя формируют для вывода на экран дисплея уточненную характеристику ДУТ в виде графика, на осях абсцисс и ординат которой отложены значения «сигнал датчика» и «количество топлива», и отображают на экране дисплея маршрутного компьютера график тарировки датчика уровня топлива.

3. Маршрутный компьютер, в состав которого входят аналогово-цифровой преобразователь, микроЭВМ с постоянным запоминающим устройством, драйвер дисплея, дисплей и орган управления, отличающийся тем, что орган управления выполнен в виде энкодера, реализующего функции поворотного и нажимного переключателей, дисплей выполнен графическим, а в ПЗУ записана программа компенсации погрешности показаний датчика уровня топлива.



 

Похожие патенты:

Изобретение относится к измерительной и преобразовательной технике и предназначено для использования в технических системах измерения и контроля уровня технологических объектов в относительных единицах.

Изобретение относится к измерительной и преобразовательной технике и предназначено для автоматизированного измерения и контроля уровня жидких сред в закрытых резервуарах АСУТП.

Изобретение относится к измерительной и преобразовательной технике и может быть использовано для автоматизированного измерения и контроля уровня и плотности жидких сред в АСУТП.

Изобретение относится к измерителям уровня жидкости для жестких вертикальных резервуаров, в частности к уровнемерам жидкости с применением поплавков, и может быть использовано в нефтяной и химической промышленности преимущественно для контроля за уровнем жидкостей, хранящихся в любых вертикальных резервуарах, имеющих горизонтальные днища.

Изобретение относится к устройствам для измерения и контроля уровня жидких сред. .

Изобретение относится к измерительной технике и предназначено для использования в технологических системах измерения и для контроля жидких взрывоопасных сред в качестве мобильного прибора.

Изобретение относится к измерительной и преобразовательной технике и предназначено для использования в качестве мобильного измерительного прибора для измерения и контроля жидких взрывоопасных сред.

Уровнемер // 2289795
Изобретение относится к устройствам для измерения уровня жидкости с использованием ультразвуковых волн. .

Датчик // 2284480
Изобретение относится к приборостроению и может быть использовано в различных отраслях промышленности для измерения уровня жидкости, расхода жидкости ограничения налива жидкости в емкость.

Изобретение относится к области приборостроения и может быть использовано для измерения уровня и плотности жидкости в замкнутых объемах. .

Изобретение относится к области контрольно-измерительной техники и может быть использовано для контроля уровня различных жидкостей в аппаратах, емкостях и сосудах стационарных и подвижных установок

Изобретение относится к области контрольно-измерительной техники и может быть использовано для измерения (контроля) высоты уровня жидкости в резервуарах

Изобретение относится к области приборостроения и может быть использовано для измерения уровня и плотности жидкости в замкнутых объемах, в частности топлива для двигателей внутреннего сгорания железнодорожного транспорта

Изобретение относится к способу эксплуатации для транспортного средства, который содержит этапы измерения уровня наполнения жидкости в резервуаре транспортного средства посредством средства измерения, отнесения измеренного уровня наполнения к ближайшему порогу уровня наполнения из множества известных порогов уровня наполнения, в которых каждый порог уровня наполнения представляет определенное значение наполнения, активизации по меньшей мере одного порога уровня наполнения из множества порогов уровня наполнения посредством средства измерения, анализа, повторяемости активизации порога уровня наполнения и/или повторяемости отнесения измеренного уровня наполнения к ближайшему порогу уровня наполнения и определения порога уровня наполнения, который имеет максимальную повторяемость относительно определенного периода времени и поэтому представляет реальное значение наполнения, в частности для времени, в течение которого выполняется следующее определение. Реальное значение наполнения может быть определено исходя из того, какие ошибки измерения возникают вследствие колебания, например шума измерения или других ошибок, вызванных технологией измерения. Задачей изобретения является определение реальных значений наполнения жидкости в резервуаре, которое может быть сравнено с ориентирным удалением, которое требуется для сокращения загрязняющих веществ в выхлопном газе транспортного средства. 20 з.п. ф-лы, 2 ил.

Изобретение относится к аналитическому приборостроению и может найти применение в лабораторных или пилотных установках моделирования процессов крекинга, гидрокрекинга и гидроочистки нефтепродуктов. Уровнемер состоит из помещенного в резервуар тонкостенного поплавка с открытым дном, в отверстие которого введена выполненная из немагнитного материала трубка, находящийся внутри поплавка конец которой заглушен, а нижний ее конец герметично закреплен на дне резервуара так, что внутренний объем трубки связан с атмосферой, а внутрь трубки помещены связанные с блоком автоматики датчики «Холла», взаимодействующие с закрепленным на поплавке надетым на трубку кольцевым постоянным магнитом. Высота поплавка и длина трубки выбраны таким образом, что поплавок в своем нижнем положении повисает на заглушенном конце трубки, не имея возможности опуститься на дно резервуара. На теле резервуара закреплены направляющие, обеспечивающие вертикальное положение поплавка, при этом элементы направляющих, контактирующие с поверхностью поплавка, имеют сферическую форму. Техническим результатом является повышение достоверности и точности измерения уровня. 3 з.п. ф-лы, 1 ил.
Заявленное решение используется для определения полной и остаточной объемной деформации сосудов (баллонов) под действием пробного давления. Техническая задача заключается в уменьшении трудоемкости и в устранении сложных расчетов для определения полной и остаточной объемной деформации. Предлагаемый способ осуществляется следующим образом. Внутри рубашки или снаружи на выносных элементах устанавливается преобразователь линейного перемещения поплавкового типа, который определяет уровень воды в рубашке. При погружении баллона в водяной рубашке устанавливается начальный уровень воды, который принимается за нулевой (Но). Затем в сосуд подается вода до величины пробного давления, уровень воды водяной рубашки увеличивается, а преобразователь линейного перемещения показывает уровень воды в момент полной объемной деформации сосуда (Нп). После необходимой выдержки сосуда и сброса давления преобразователем линейного перемещения фиксируется уровень воды в водяной рубашке, который соответствует остаточной объемной деформации сосуда (Ност).

Изобретение относится к кондиционированию изолирующих газов. Устройство для кондиционирования газов включает сепарирующее устройство (3), предназначенное, в частности, для отделения жидкостей и/или частиц от газа, проходящего через устройство, со сборным резервуаром (1) для отделенных веществ, причем сепарирующее устройство (3) содержит циклонный сепаратор (3), при этом на сборном резервуаре (1) предусмотрены два штуцера (25, 27) датчиков, соединенные с сенсорным устройством (29), представляющим собой трубки, соединяющиеся с внутренней частью сборного резервуара (1). Сепарирующее устройство (3) может быть выполнено в виде самостоятельного узла, через который может проходить газ, и установлено на сборный резервуар (1) с возможностью замены. Данная конструкция обеспечивает низкую потребность в техосмотре, низкие эксплуатационные затраты, эффективную сепарацию и возможность контроля устройства снаружи. 2 н. и 10 з.п. ф-лы, 4 ил.
Наверх