Электрогидравлический излучатель

Изобретение относится к области геофизических исследований и может быть использовано для получения акустических сигналов, например, в водной сейсморазведке, в медицине, например, при дроблении камней в почках, в рыболовстве, например, для предотвращения выхода рыб из зоны облова, а также для отпугивания их от гидротехнических сооружений и др. Сущность: электрогидравлический излучатель содержит корпус, выполненный из немагнитного электроизоляционного материала, и электроразрядник, выполненный с возможностью подключения к источнику тока. Электроразрядник размещен в полости акустического резонатора, выполненного в виде трубчатой выемки в корпусе. Пара соосных электродов электроразрядника размещены в плоскости, перпендикулярной продольной оси выемки, и расположены на расстоянии от дна выемки, равном половине расстояния, которое проходит звук в воде за время, равное длительности первого полупериода импульса электрического разряда. Электроды размещены между разноименными полюсами постоянных электромагнитов. Магнитные силовые линии перпендикулярны вертикальной плоскости, проходящей через продольную ось электродов. Технический результат: уменьшение стоимости, упрощение конструкции и простота эксплуатации. 4 ил.

 

Изобретение относится к области геофизических исследований и может быть использовано для получения акустических сигналов, например, в водной сейсморазведке, в медицине, например, при дроблении камней в почках, в рыболовстве, например, для предотвращения выхода рыб из зоны облова, а также для отпугивания их от гидротехнических сооружений и др.

Известны излучатели, использующие электрические разряды для мощных коротких акустических импульсов (см. патент РФ №2099831, 20.12.1997 г.). Данный излучатель представляет собой цепочку последовательно соединенных пар электродов, искровые промежутки между которыми пространственно размещаются в узлах антенной решетки заданных размеров. Эффективность излучателя достигается путем обеспечения синфазности разрядных процессов между каждой парой электродов.

Недостатком данного устройства является то, что для получения значительной мощности акустических сигналов направленного действия необходимо большое количество пар электродов, что приводит к увеличению затрат, а также соблюдение точного расположения относительно узлов антенной решетки.

Наиболее близким к предлагаемому изобретению является электрогидравлический излучатель акустических импульсов, используемый для создания акустических колебаний в геофизических исследованиях (см. патент РФ №2054698, 20.02.1996 г.). Устройство содержит источник электрической энергии, ключ, несколько пар помещенных в электролит и соединенных параллельно между собой и источником электрической энергии электродов. Между парами электродов установлены перегородки, экранирующие акустическую и электрическую энергию электрического разряда каждой пары электродов. Перегородки выполнены из металла и соединены с корпусом.

Недостатком данного устройства является тот факт, что повышение его эффективности достигается путем увеличения числа пар электродов, что приводит к росту стоимости и неудобству в эксплуатации.

Задачей, на решение которой направлено предлагаемое техническое решение, является повышение эффективности преобразования электрической энергии в акустическую.

Технический результат, который достигается при решении поставленной задачи, выражается в уменьшении стоимости, упрощении конструкции и, как следствие, простоте в эксплуатации.

Поставленная задача решается тем, что электрогидравлический излучатель, содержащий корпус, электроразрядник, выполненный с возможностью подключения к источнику тока, отличается тем, что корпус выполнен из немагнитного электроизоляционного материала, при этом электроразрядник размещен в полости акустического резонатора, выполненного в виде трубчатой выемки в корпусе и выполненного в виде пары соосных электродов, размещенных в плоскости, перпендикулярной продольной оси выемки, расположенной на расстоянии от дна выемки, равном половине расстояния, которое проходит звук в воде за время, равное длительности первого полупериода импульса электрического разряда, кроме того, электроды, обеспечивающие разряд в виде электрической дуги, размещены между разноименными полюсами постоянных электромагнитов, размещенных с возможностью обеспечения перпендикулярности магнитных силовых линий вертикальной плоскости, проходящей через продольную ось электродов.

Сопоставительный анализ существенных признаков предлагаемого решения с существенными признаками аналогов и прототипа свидетельствует о его соответствии критерию «новизна».

При этом признаки отличительной части формулы изобретения решают следующие функциональные задачи.

Признак: «...корпус выполнен из немагнитного электроизоляционного материала...» - позволяет исключить пробой между электродами через корпус.

Признаки: «...электроразрядник размещен в полости акустического резонатора, выполненного в виде трубчатой выемки в корпусе и выполненного в виде пары соосных электродов, расположенных в плоскости,перпендикулярной продольной оси выемки, расположенной на расстоянии от дна выемки, равном половине расстояния, которое проходит звук в воде за время, равное длительности первого полупериода импульса электрического разряда,...» - позволяют добиться увеличения амплитуды акустической волны за счет наложения отраженной волны от дна выемки, полученной при первом полупериоде импульса электрического разряда, и волны, полученной при втором полупериоде импульса электрического разряда. Увеличение амплитуды акустической волны приведет к росту энергии, излучаемой в направлении выхода из акустического резонатора.

Признаки: «...электроды, обеспечивающие разряд в виде электрической дуги, размещены между разноименными полюсами постоянных электромагнитов, размещенных с возможностью обеспечения перпендикулярности магнитных силовых линий вертикальной плоскости, проходящей через продольную ось электродов» - позволяют снизить напряжение, необходимое для образования дуги между электродами, а также добиться необходимого направления получаемой разрядной дуги и, следовательно, согласованности размера выемки акустического резонатора и длительности периода импульса электрического разряда. Ввиду того что электрический разряд происходит в магнитном поле, в результате явления электромагнитной индукции, электрическая дуга смещается вдоль оси акустического резонатора, что дополнительно повышает первоначальный заброс амплитуды гидравлического удара.

Сущность предлагаемого изобретения поясняется чертежами.

На фиг.1 приведен общий вид электрогидравлического излучателя, на фиг.2 - вид сверху электрогидравлического излучателя, на фиг.3 - разрез А-А электрогидравлического излучателя, на фиг.4 - форма импульса электрического тока при дуговом электрическом разряде.

Излучатель состоит из электрического разрядника 1 (фиг.1), размещенного у выходного отверстия акустического резонатора 2 (фиг.3), выполненного в виде трубы, заглушенной с противоположной стороны. Расстояние между электродами электрического разрядника 1 выбрано таким, чтобы электрический разряд происходил в виде электрической дуги, а длина трубы акустического резонатора 2 равна половине расстояния, которое проходит акустическая волна в воде за время, равное длительности (t1) первого полупериода импульса электрического разряда (фиг.4). Корпус акустического резонатора 2 выполнен из немагнитного электроизоляционного материала. Электроды электрического разрядника 1 расположены между разноименными полюсами постоянных магнитов 3 и 4, закрепленных болтами 5 и 6 так, чтобы электрический разряд был перпендикулярен направлению магнитных силовых линий. Токоведущие провода 7 подсоединены к электродам электрического разрядника 1. Устройство может содержать два или несколько излучателей.

Работает электрогидравлический излучатель следующим образом.

При подаче электрического импульса с внешнего источника тока между электродами разрядника 1 происходит электрический разряд, сопровождающийся наличием электрической дуги (газоразрядной плазмы). Электрический разряд в воде в результате разрыва сплошности среды вызывает гидравлический удар, который обусловлен сжимаемостью жидкости и упругой деформацией корпуса акустического резонатора 2, а также распределенностью массы жидкости по длине трубы акустического резонатора 2. Гидравлический удар сопровождается волновым процессом в акустическом резонаторе 2 с наложением ударных волн, при котором колебания (пульсации) давления повторяются до тех пор, пока начальная кинетическая энергия не будет поглощена трением (преобразована в теплоту). Ввиду того что электрический разряд происходит в магнитном поле, в результате явления электромагнитной индукции, электрическая дуга смещается вдоль оси акустического резонатора 2, что дополнительно повышает первоначальный заброс давления гидравлического удара. При положительном полупериоде дуга смещается вдоль оси акустического резонатора 2, в результате чего волна акустического давления перемещается вдоль трубы акустического резонатора 2. В течение времени (t1) длительности первого полупериода (фиг.4) волна акустического давления прошла вдоль трубы акустического резонатора и, отразившись от заглушенной стенки, вернулась к электродам разрядника. В этот момент направление электрического тока в дуге меняется на противоположное, что приводит к смещению ее в обратном направлении, а это, в свою очередь, вызывает дополнительное повышение давления в акустической волне на выходе из акустического резонатора 2.

Электрогидравлический излучатель, содержащий корпус, электроразрядник, выполненный с возможностью подключения к источнику тока, отличающийся тем, что корпус выполнен из немагнитного электроизоляционного материала, при этом электроразрядник размещен в полости акустического резонатора, выполненного в виде трубчатой выемки в корпусе и выполненного в виде пары соосных электродов, размещенных в плоскости, перпендикулярной продольной оси выемки, расположенной на расстоянии от дна выемки, равном половине расстояния, которое проходит звук в воде за время, равное длительности первого полупериода импульса электрического разряда, кроме того, электроды, обеспечивающие разряд в виде электрической дуги, размещены между разноименными полюсами постоянных электромагнитов, размещенных с возможностью обеспечения перпендикулярности магнитных силовых линий вертикальной плоскости, проходящей через продольную ось электродов.



 

Похожие патенты:

Изобретение относится к нефтегазодобывающей промышленности, методам разведочной геофизики. .

Изобретение относится к сейсмоакустике и может быть использовано для акустического воздействия на нефтяные пласты, проведения вертикального сейсмического профилирования и межскважинного просвечивания.

Изобретение относится к сейсмической технике, к устройствам для возбуждения сейсмических колебаний электродинамическим способом. .

Изобретение относится к сейсморазведке и предназначено для излучателя электроискрового источника сейсмических волн. .

Изобретение относится к сейсморазведке , а именно к устройствам для возбуждения сейсмических колебаний. .

Изобретение относится к сейсморазведке, а именно к устройствам для возбуждения сейсмических колебаний, устанавливаемым на самоходных транспортных средствах и использующим их массу в качестве реактивной.

Изобретение относится к сейсмической технике, а именно к самоходным источникам сейсмических колебаний, использующим массу транспортного средства в качестве реактивной.

Изобретение относится к области геофизических исследований и может быть использовано при морской сейсмической разведке

Изобретение относится к области сейсмических исследований и может быть использовано для возбуждения сейсмических сигналов при калибровке сейсмоприемников

Изобретение относится к устройствам для генерирования сейсмической энергии и может быть использовано для вертикального сейсмического профилирования и межскважинного просвечивания

Изобретение относится к области получения световых и ударно-акустических волн в проводящей жидкости (электролите) и может быть использовано для обеззараживания промышленных и бытовых стоков, а также для стерилизации медицинского инструмента

Изобретение относится к технике получения световых и акустических импульсов в проводящей жидкости и может быть использовано для очистки жидкости, а также в сейсморазведке

Группа изобретений относится к горному делу и может быть применена для электрического разрыва пласта. Устройство (100) для разрыва геологического углеводородного пласта содержит два пакера (102, 103), определяющих между собой ограниченное пространство (104) в скважине, пробуренной в пласте; насос для повышения давления текучей среды в указанном ограниченном пространстве; устройство для нагрева текучей среды; по меньшей мере одну пару из двух электродов (106), расположенных в указанном ограниченном пространстве; и электрическую цепь для создания электрической дуги между двумя электродами. Причем указанная цепь содержит по меньшей мере один источник напряжения, соединенный с электродами (106), и элемент индуктивности между источником напряжения и одним из двух электродов. Технический результат заключается в повышении эффективности разрыва пласта. 3 н. и 16 з.п. ф-лы, 16 ил.

Изобретение относится к нефтегазовой промышленности, преимущественно к скважинным геофизическим приборам. Скважинный источник плазменно-импульсного воздействия содержит корпус, в котором расположен блок управления, соединенный с накопителем электрической энергии, и плазменный излучатель, соединенный с механизмом подачи металлического проводника. При этом между накопителем электрической энергии и плазменным излучателем установлен электромеханический контактор-разрядник, содержащий подвижный и неподвижный контакты. Причем неподвижный контакт соединен с высоковольтной положительной шиной накопителя электрической энергии, а подвижный контакт при помощи гибкого изолированного проводника соединен с высоковольтным электродом плазменного излучателя. Технический результат - повышение надежности работы скважинного источника плазменно-импульсного воздействия. 8 з.п. ф-лы, 2 ил.

Изобретение относится к нефтегазовой промышленности, преимущественно к скважинным геофизическим приборам. Скважинный источник плазменно-импульсного воздействия содержит накопитель электрической энергии, механизм подачи металлического проводника, состыкованный с плазменным излучателем, который в свою очередь соединен с блоком управления. К последнему жестко присоединена кабельная головка, на которую накручен кабельный наконечник с зафиксированным в нем геофизическим кабелем. Плазменный излучатель включает оппозитно расположенные высоковольтный и низковольтный электроды, каждый из которых имеет сменный контактный элемент из тугоплавкого материала, при этом на торцах обоих контактных элементов выполнены сферические углубления, обращенные вогнутостью друг к другу. Вместе с тем, сферические углубления на торцах контактных элементов имеют одинаковый радиус кривизны с общим центром, лежащим на общей геометрической оси. Кроме того, расстояние между высоковольтным и низковольтным электродами может ступенчато регулироваться путем попарной замены контактных элементов, имеющих иные геометрические размеры в осевом направлении. Помимо этого, контактный элемент высоковольтного электрода снабжен наружным изолятором по периферии. Технический результат - повышение надежности и эффективности работы скважинного источника плазменно-импульсного воздействия. 8 з.п. ф-лы, 3 ил.

Изобретение относится к области нефтедобывающей промышленности, в частности к оборудованию для стимуляции повышения нефтеотдачи пласта. Комплекс наиболее применим при работах на скважинах, где используются фонтанный и газлифтный способы добычи нефти, а также при комплексной обработки призабойной зоны пласта совместно с акустическими (ультразвуковыми) излучателями. Комплекс с плазменным разрядником состоит из двух основных частей: наземный блок питания и управления и скважинный электрогидравлический прибор, состоящий из блока стабилизации, блока конденсаторов и плазменного разрядника. Он имеет длину не более 3 метров и диаметр не более 52 мм, что обеспечивает свободный проход прибора через все существующие НКТ. Прибор имеет модульную конструкцию, позволяющую наращивать мощность плазменного разряда от 0,5 до 3 кДж. Он также включает в себя плазменный разрядник легко разбираемой конструкции для замены электродов и установки новой катушки с проволокой, имеющий механический привод узла протяжки проволоки, приводимый в движение поршневым механизмом, работающим от высокого импульса давления, производимого самим разрядником. Технический результат - повышение эффективности операции по повышению нефтеотдачи пласта при работе через НКТ. 4 з.п. ф-лы, 2 ил.

Изобретение относится к емкостным накопителям энергии для скважинных электроразрядных аппаратов и может быть использовано в нефтегазодобывающей промышленности для повышения дебита нефтяных и газоконденсатных скважин и/или повышения приемистости нагнетательных скважин, а также межскважинного сейсмопросвечивания и электромагнитного сканирования. Емкостный накопитель энергии содержит, по крайней мере, два конденсатора, высоковольтную и заземленную токопроводящие шины. При этом конденсаторы расположены в одну линию вдоль шин и подключены к ним параллельно, а смежные конденсаторы расположены одноименными выводами друг напротив друга, при механическом и электрическом соединении смежных конденсаторов одноименными выводами друг с другом. Техническим результатом изобретения является снижение индуктивности, повышение механической и электрической прочности емкостного накопителя, при одновременном уменьшении его длины, веса. 13 з.п. ф-лы, 5 ил.
Наверх