Способ растворения диоксида урана

Изобретение относится к способам переработки материалов, содержащих диоксид урана, и может быть использовано для извлечения урана из отработанного ядерного топлива, а также отходов металлургических и механических операций производства изделий из диоксида урана. Способ растворения диоксида урана включает окислительное растворение диоксида урана в неводном растворителе. Растворитель содержит трибутилфосфат и разбавитель. В качестве разбавителя используют хлор, фтор-содержащий углеводород с температурой кипения ниже 100°С, который после растворения диоксида урана отгоняют. В качестве низкокипящего хлор, фтор-содержащего углеводорода может быть использован 1,1,2-трифтортрихлорэтан, 1,2-дифтор-1,1,2-трихлорэтан или 1,1-хлор-1-фторэтан. Изобретение позволяет совместить растворение диоксида урана и экстракцию растворенного урана в органическую фазу. 3 з.п. ф-лы, 1 табл.

 

Предлагаемое изобретение относится к способам переработки материалов, содержащих диоксид урана, и может быть использовано для извлечения урана из отработанного ядерного топлива, а также отходов металлургических и механических операций производства изделий из диоксида урана.

Известен способ переработки диоксида урана, включающий растворение UO2 в азотной кислоте с последующей экстракцией полученного раствора в трибутилфосфате (ТБФ) [Громов Б.В., Савельева В.И., Шевченко В.Б. «Химическая технология облученного ядерного топлива», М., Энергоиздат, 1983, 352 с.].

Недостатки данного способа связаны с разделением стадий растворения и экстракции, необходимостью использования повышенных температур для эффективного действия азотной кислоты, образованием больших объемов промывных вод.

Известен способ, включающий окислительное растворение диоксида урана смесью трибутилфосфат (ТБФ) - керосин, содержащей азотную кислоту [Патент США №3288568, 1966 г.].

Недостатками данного способа является необходимость предварительного насыщения органической фазы азотной кислотой, что связано с повышенным разрушением органического растворителя и приводящее к образованию отработанной водной фазы; необходимость повышенной температуры (минимум 50°С) для эффективного действия растворяющей системы; повышенная пожароопасность системы за счет использования керосина; невозможность концентрирования урана в органической фазе.

Наиболее близким является «Способ неводного растворения урана и урансодержащих материалов» [Патент РФ №2238600, 2002 г.] включающий растворение металлического урана и урансодержащих материалов в растворяющей системе ТБФ - тетрахлорэтилен (ТХЭ).

Основным недостатком данного способа является использование в качестве разбавителя ТХЭ, имеющего Ткип=121,2°С, что затрудняет его отгонку из продукционных растворов с целью их концентрирования.

Технический результат предлагаемого изобретения заключается в совмещении растворения диоксида урана и перевода растворенного урана в органическую фазу, что позволяет отказаться от использования воды в процессе и отделить примеси уже на стадии растворения. Отгонка из продукционного раствора части низкокипящего хлор, фтор-содержащего углеводородного разбавителя позволит в пожаробезопасных и низкотемпературных условиях сконцентрировать продукционный раствор для дальнейшей переработки.

Технический результат предлагаемого изобретения достигается тем, что в способе растворения диоксида урана, включающем окислительное растворение диоксида урана в неводном растворителе, содержащем трибутилфосфат и разбавитель в качестве разбавителя используют хлор, фтор-содержащий углеводород с температурой кипения менее 100°С, который после растворения диоксида урана отгоняют. В качестве хлор, фтор-содержащего углеводорода используют хлористый метилен (ХМ), или четыреххлористый углерод (CCl4), или трихлорэтилен (C2HCl3), или транс-1,2-дихлорэтилен (C2H2Cl2), или 1,1,2-трифтортрихлорэтан (С2Cl3F3 или Х-113), или 1,2-дифтор-1,1,2-трихлорэтан (CHClF-CCl2F или Х-122а), 1,1-хлор-1-фторэтан (CCl2F-СН3 или Х-141б).

Использование системы ТБФ - низкокипящий хлор, фтор-содержащий углеводород позволяет резко повысить концентрацию окислителя - оксидов азота в растворяющей системе, а следовательно, резко увеличить скорость растворения диоксида урана (UO2) при низких температурах (20 - 40°С). Использование для растворения диоксида урана оксидов азота позволяет обеспечить растворение UO2 при низких температурах без использования воды. Использование низкокипящего хлор, фтор-содержащего растворителя позволяет сконцентрировать органический раствор путем отгонки разбавителя для дальнейшей переработки органического раствора. Отгонка разбавителя проводится при невысоких температурах (менее 100°С), что обеспечивается используемыми в качестве разбавителя низкокипящими хлор, фтор-содержащими углеводородами: хлористый метилен (Ткип=39,95°С), CCl4кип=76,75°С), трихлорэтилен (Ткип=87,19° С), C2H2Cl2кип=47,67°С), С2Cl3F3 (Tкип=47,60°C), CHCIF-CCl2F (Ткип=73,50°С), CCl2F-СН3кип=31,90°С).

Отгонка разбавителя проводится непосредственно из продукционного раствора, что позволяет сконцентрировать органический раствор и уменьшить объемы поступающих на дальнейшую переработку растворов. Отогнанный разбавитель после извлечения урана из концентрированного продукционного раствора объединяется с ним и направляется на растворение новых порций диоксида урана.

Согласно изобретению растворение UO2 проводят следующим образом: в реактор заливают систему ТБФ - хлор, фтор-содержащий углеводородный разбавитель, насыщают ее оксидами азота, загружают UO2 и перемешивают до полного растворения UO2. По окончании растворения отгоняют низкокипящий хлор, фтор-содержащий углеводородный разбавитель и используют концентрированный органический раствор уранилнитрата для дальнейшей переработки.

Пример 1.

10,2 г UO2 растворяли в течение 1,5 часов при 20°С и непрерывном перемешивании в 100 мл системы ТБФ (30 об.%) - хлористый метилен (ХМ) (70 об.%), насыщенной NO2 до концентрации 2,4 моль/л. UO2 растворился полностью. Концентрация урана в растворе составила 89,7 г/л. Из органического раствора отгоняли 60 мл ХМ. Концентрация урана в растворе после отгонки составила 224,1 г/л.

Результаты остальных примеров сведены в таблицу 1.

Таким образом, изобретение позволяет совместить растворение диоксида урана и экстракцию растворенного урана в органическую фазу, причем растворение проводится при помощи оксидов азота. После растворения путем простой отгонки низкокипящего хлор, фтор-содержащего разбавителя органическая фаза концентрируется для дальнейшей переработки.

1. Способ растворения диоксида урана, включающий окислительное растворение диоксида урана в неводном растворителе, содержащем трибутилфосфат и разбавитель, отличающийся тем, что в качестве разбавителя используют хлор, фтор-содержащий углеводород с температурой кипения ниже 100°С, который после растворения диоксида урана отгоняют.

2. Способ по п.1, отличающийся тем, что в качестве низкокипящего хлор, фтор-содержащего углеводорода используют 1,1,2-трифтортрихлорэтан.

3. Способ по п.1, отличающийся тем, что в качестве низкокипящего хлор, фтор-содержащего углеводорода используют 1,2-дифтор-1,1,2-трихлорэтан.

4. Способ по п.1, отличающийся тем, что в качестве низкокипящего хлор, фтор-содержащего углеводорода используют 1,1-хлор-1-фторэтан.



 

Похожие патенты:

Изобретение относится к области атомной энергетики и может быть использовано для дезактивации радиоактивно загрязненного оборудования атомных электрических станций (АЭС).
Изобретение относится к полимерной композиции для фиксации радионуклидов, в том числе 133Ва, 134Eu и 36Cl, которая может быть использована в ядерной технике с целью недопущения их выхода в окружающую среду с последующим ее заражением.

Изобретение относится к области металлургии, в частности гидрометаллургическим способам переработки и дезактивации радиоактивных отходов редкометального производства.

Изобретение относится к композиции, позволяющей получение гелеобразной водной пены, способной деконтаминировать, очищать и обезжиривать радиоактивную поверхность.
Изобретение относится к области охраны окружающей среды, в частности к дезактивации грунтов, почв и техногенных объектов, и предназначено для очистки грунтов от радионуклидов цезия, стронция, кобальта.

Изобретение относится к области ядерной энергетики, а именно способам дезактивации, и может быть использовано для дезактивации внутренних поверхностей оборудования первых контуров ядерных энергетических установок, например, с водным теплоносителем.

Изобретение относится к области дезактивации твердых радиоактивных отходов, переработки жидких радиоактивных отходов и фиксации радиоактивных элементов в устойчивой твердой среде.

Изобретение относится к области дезактивации твердых радиоактивных отходов, переработки жидких радиоактивных отходов и фиксации радиоактивных элементов в устойчивой твердой среде.

Изобретение относится к обработке материалов с радиоактивным заражением, а именно к способам удаления твердых радиоактивных отложений с металлических нерадиоактивных поверхностей, например нержавеющих сталей.
Изобретение относится к ядерной технике, в частности к обработке твердых радиоактивных отходов, и может быть использовано в радиохимической технологии для переработки облученного ядерного топлива.

Изобретение относится к области атомной энергетики и предназначено для удаления эксплутационных радиоактивных отложений с поверхностей оборудования первых контуров атомных электрических станций (АЭС)
Изобретение относится к области переработки долгоживущих радиоактивных отходов (РАО), содержащих ионообменные смолы (ИОС) и фиксированные на них радионуклиды

Изобретение относится к устройствам для дистанционной выгрузки радиоактивных сорбентов из высокотемпературных фильтров теплоносителя первого контура атомной электростанции
Изобретение относится к прикладной радиохимии и предназначено для подготовки к захоронению радиоактивных отходов, а именно - иода-129, при переработке облученного топлива атомных электростанций

Изобретение относится к области ядерной технологии и предназначено для использования при дезактивации оборудования ядерно-топливных циклов и атомных подводных лодок

Изобретение относится к области выделения металлов и может быть использовано для очистки растворов от малых концентраций токсичных металлов, в том числе радионуклидов, а также для концентрирования металлов в аналитической химии
Изобретение относится к области химической и радиохимической промышленности и может быть использовано для регенерации отработавшего ядерного топлива, главным образом дисперсионных твэлов с композициями (керметами) типа Be - UBe13, Be - UO2, и возврата обогащенного урана в топливный цикл, извлечения (утилизации) урана и бериллия из отходов производства уран-бериллиевых композиций

Изобретение относится к технологии утилизации и может быть использовано при утилизации крупногабаритного корабля с ядерной энергетической установкой

Изобретение относится к области охраны окружающей среды, реабилитации территорий, загрязненных техногенными радиоактивными изотопами
Изобретение относится к ядерной технике и может быть использовано при утилизации и захоронении облученных изделий из бериллия, применяемых в качестве отражателя и замедлителя нейтронов ядерных реакторов, а также компонентов бланкета и других элементов термоядерного реактора
Наверх