Устройство для ввода электромагнитного излучения в реактор

Изобретение может быть использовано для фотолитической генерации свободных радикалов, а также для проведения свободнорадикальных цепных реакций в газовой фазе. Газообразный промотор подают через газовый ввод 72. Продувочный газ подают через впуск 70 в отсек 67, а затем по каналу 71 в реакционную область 68. Излучение от источника проходит через оптическое окно 58 и передает энергию молекулам реагирующей смеси в реакционной области 68 и любому промотору, находящемуся в отсеке 67 за счет генерирования свободных радикалов, которые стимулируют реакцию. В результате постоянной продувки отсека 67 оптическое окно 58 оказывается отделенным от реакционной области 68 газовой подушкой, вследствие чего на нем не образуется налет. Изобретение позволяет снизить образование углеродных отложений на оптических окнах или светопроводящих элементах. 2 н. и 9 з.п. ф-лы, 4 ил.

 

Область техники

Настоящее изобретение относится к устройству, посредством которого электромагнитное излучение может быть введено в реактор, в частности, для фотолитической генерации свободных радикалов, а также к реактору для проведения свободнорадикальных цепных реакций в газовой фазе, оснащенному данным устройством.

Предшествующий уровень техники

При проведении свободнорадикальных цепных реакций обычно желательно иметь большое количество инициирующих свободных радикалов, чтобы увеличить преобразование в данном объеме реакции при прочих равных условиях.

Свободнорадикальные газофазные цепные реакции проводятся в промышленных масштабах уже на протяжении многих лет. Одним из путей для повышения экономичности этих процессов мог бы быть поиск реакций с очень высоким преобразованием. С этой целью в подаваемый газ добавляются промоторы, представляющие собой соединения, которые распадаются на свободные радикалы при условиях, преобладающих в реакторе, и вступают в цепную реакцию, что ведет к образованию требуемых продуктов. Применение таких соединений известно, например, из патента США 4590318 или патента Германии DE-A-3328691.

Было предложено разлагать галогеносодержащие алифатические углеводороды на свободные радикалы с помощью лазерного излучения и использовать их в свободнорадикальных цепных реакциях, например, для производства хлорвинила. Примеры см. в SPIE, Vol.458. Applications of Lasers to Industrial Chemistry (1984), pp.82-88, Umschau 1984, Number 16, p.482, и патенте Германии DE-A-2938353, патенте Германии DE-C-3008848 и европейском патенте ЕР-А-27554. Тем не менее эта технология до настоящего времени не была внедрена в промышленное производство, возможно по причине того, что предлагаемый до сих пор реактор не подходил для длительного применения.

При проведении свободнорадикальных газофазных реакций предполагается образование побочных продуктов. Они засоряют реактор при долговременном использовании и осаждаются в реакторе в виде, например, углеродных отложений.

В частности, при использовании промоторов скорость образования углерода возрастает, так как промоторы должны использоваться в таких количествах, чтобы оказывать существенный эффект на реагирующие вещества.

Эти недостатки сводят на нет экономический эффект, достигаемый увеличением преобразования реакций, и ведут к тому, что использование активирующих веществ не становится преобладающим в промышленности к сегодняшнему дню.

Проблема образования углерода описана в патенте Германии DE-A-3008848. Там же предлагается фотохимическое инициирование свободнорадикальной цепной реакции путем прямого излучения света в область реакции с использованием в качестве источника света как ламп на парах металлов, так и лазеров. В патенте указано, что окно быстро покрывается побочными продуктами при длительной работе с такими источниками света, как лампы на парах металлов, в то время как при использовании лазеров оно остается чистым.

Можно было бы создать высокую скорость потока в области оптического окна, чтобы формирующиеся побочные продукты в ощутимых количествах образовывались бы только после окна по ходу процесса.

Однако эта методика имеет тот недостаток, что «самоочистка» окна вероятно возможна только при использовании импульсных лазеров, так как в этом случае импульсы давления, создаваемые внутри и вокруг углеродных частиц коротким локальным разогревом газа, стряхивают частицы и наслоения углерода с окна. Хотя использование импульсных лазеров детально не рассматривается в указанном патенте Германии DE-A-3008848, оно рассматривается в патенте Германии DE-A-2938353, который включен в патент Германии DE-A-3008848 в качестве ссылки.

Эксперименты, на которых основываются патент Германии DE-A-3008848 и патент Германии DE-A-2938353, проводились в реакторе из плавленого кварца. Однако, в случае промышленных металлических реакторов, углеродные отложения образуются даже во внутренней области реактора и, следовательно, выше любого установленного оптического окна. Среди возможных причин, во-первых, то, что углеродные предшественники образуются в области входа реактора, во-вторых, что даже когда исходные вещества тщательно очищены дистилляцией, в промышленном процессе малые количества углеродных предшественников вводятся в реактор вместе с исходными веществами. Следовательно, имеется необходимость в процессах, которые могли бы быть легко реализованы в промышленности и в которых образования углеродных отложений можно было бы эффективно избежать.

Данное изобретение обходит указанные недостатки и предлагает устройство или реактор, в которых свет может вводиться внутрь реактора, работающего при условиях термического разложения углеводородов. Для этого продувочный газ подается в область, которая отделена от основной области реактора и через которую проходит излучение от источника, а этот газ затем вводится в область реакции.

Краткое изложение существа изобретения

Технической задачей данного изобретения является создание устройства для ввода электромагнитного излучения в реактор, который мог бы использоваться в течение длительного времени и в котором, в указанном режиме, тенденция к образованию углерода или углеродных отложений на оптических окнах или светопроводящих элементах была бы существенно снижена по сравнению с ранее известными устройствами.

Другой задачей изобретения является создание реактора, к которому легко можно было бы герметично присоединить устройство для ввода электромагнитного излучения даже при условии работы при высоких температурах.

Кроме того, еще одной задачей настоящего изобретения является создание устройства и реактора для проведения свободнорадикальных цепных реакций, в которых может быть достигнута более высокая степень преобразования по сравнению с обычными реакциями при той же самой рабочей температуре или же уменьшение рабочей температуры по сравнению с обычными реакциями при той же степени образования преобразования.

Поставленная задача согласно изобретению решена путем создания устройства для ввода электромагнитного излучения в реактор для проведения свободнорадикальных газофазных реакций, которое содержит

отсек, отделенный от области реакции, по меньшей мере один канал, соединяющий с областью реакции в реакторе с отсеком,

по меньшей мере одну линию подачи для ввода продувочного газа в отсек,

по меньшей мере один источник электромагнитного излучения, который расположен так, что

электромагнитное излучение проходит через отсек и примыкающую к отсеку область реакции в реакторе.

Устройство соединено с трубкой для продувочного газа, которая открыта в отсек.

Продувочный газ вводится в реактор через указанное устройство согласно настоящему изобретению.

Этим продувочным газом может быть инертный газ и/или газ, содержащий промоторы диссоциации, и/или газы, представляющие собой компоненты реакционной системы, и/или газообразные регенераторы.

В случае промоторов диссоциации они фотолитически расщепляются в отсеке прямо перед введением в реактор или в облучаемой области после канала из отсека в реактор.

Примерами инертных газов могут служить газы, которые инертны в условиях, преобладающих в реакторе, такие как азот, благородные газы, например аргон, или углекислый газ.

Примерами газов, представляющих собой компоненты реакционной системы, могут служить газы, содержащие компоненты подводимого газового потока.

Примером газообразного регенератора является водород.

Промоторы для фотолитического разложения в устройстве согласно настоящему изобретению и для введения в реактор сами по себе известны. Это соединения, которые распадаются при облучении на активные молекулы особого вида, такие как свободные радикалы, и стимулируют свободнорадикальную цепную реакцию в реакционной области реактора.

Типичные температуры газового потока внутри реактора в области устройства для введения электромагнитного излучения зависят от типа газофазной реакции и находятся в большом диапазоне, например от 250 до 1300°С.

Эффект от подачи внутрь газа через устройство согласно настоящему изобретению зависит не только от выбранной температуры, но также от природы производимых радикалов и от их количества. Как правило, вводят всего не более 10 мас.% продувочного газа, предпочтительно не более 5 мас.%, обычно от 0,0005 до 5 мас.%, исходя из общего расхода в реакторе.

Предполагается, что подача продувочного газа препятствует отложению углерода на деталях оптической части.

Кроме того, когда используются промоторы, происходит фотолитическое образование свободных радикалов, что стимулирует свободнорадикальные цепные реакции в реагирующей смеси, поскольку очевидно имеется повышенная концентрация свободных радикалов.

Предпочтительно, чтобы хотя бы одно устройство согласно настоящему изобретению было размещено вблизи точки, где газовый поток входит в реактор. В результате в месте, где подаваемый газ входит в реактор, образуется высокая концентрация свободных радикалов и эти радикалы способствуют эффективной цепной реакции.

В предпочтительном варианте выполнения реактора реагирующая смесь, проходя по реактору, приводится в контакт с множеством таких устройств.

Особенно предпочтительно, чтобы число устройств согласно настоящему изобретению в первой трети реактора было больше, чем во второй трети и/или в последней трети.

Согласно изобретению также предложен реактор для проведения свободнорадикальных газофазных реакций, с которым сообщается по меньшей мере одно из описанных выше устройств.

Реактор содержит, по меньшей мере, следующие элементы:

1) линию для подачи газового потока, сообщенную с реактором,

2) по меньшей мере одно вышеописанное устройство, содержащее отсек и отверстие для сообщения с реактором для ввода в реактор электромагнитного излучения,

3) линию для подачи продувочного газа, сообщенную с отсеком устройства,

4) источник продувочного газа, соединенный с линией для подачи продувочного газа,

5) если требуется, нагревательный элемент для нагрева продувочного газа в линии подачи,

6) нагревательный элемент для нагрева и/или поддержания температуры газового потока в реакторе,

7) выходную линию для отвода потока продуктов свободнорадикальной газофазной реакции из реактора.

Что касается реактора, то возможно использование любого известного типа реакторов, ориентированного на такие реакции. Предпочтение отдается трубчатым реакторам.

После реактора согласно настоящему изобретению может следовать адиабатический вторичный реактор, желательно включающий в себя вышеописанные элементы 2, 3, 4. В адиабатическом вторичном реакторе требуемый для реакции нагрев обеспечивается теплом от подводимого потока продуктов реакции, который в результате охлаждается.

Вместо комбинации ректора согласно настоящему изобретению и адиабатического вторичного реактора, содержащего элементы 2, 3, 4, также возможно сопряжение адиабатического вторичного реактора с реактором, который сам по себе известен и не содержит указанных элементов.

Устройство согласно изобретению открывается внутрь реактора согласно изобретению и подводит продувочный газ в подводимый газовый поток, когда он проходит через реактор, и обеспечивает ввод электромагнитного излучения внутрь реактора.

Продувочный газ (смесь) протекает через отсек перед основной реакционной областью и затем проходит через канал, который может иметь форму сопла, в основную реакционную область.

Для проведения фотолиза, электромагнитное излучение от источника, подходящего для описываемых целей, вводится через оптически прозрачное окно, желательно из плавленого кварца, или через световод в отсек, отделенный от основной реакционной области, и проходит через сам отсек, а также через часть прилегающей к нему реакционной области.

В отсеке продувочный газ образует газовую подушку, которая в значительной степени отделяет оптические элементы, такие как оптическое окно, от реакционного пространства. Корректность этого подхода будет проиллюстрирована в примере ниже.

Нежелательной вторичной реакцией при проведении свободнорадикальных реакций в газовой фазе является отложение углерода на стенках реактора. Процесс отложения углерода протекает более медленно на неметаллических материалах, таких как плавленый кварц, чем на металлических. Этот факт используется для замедления образования углерода в реакторных трубках путем нанесения неметаллического покрытия на их внутренние стенки. Несмотря на это, углерод все равно бы осаждался на оптических элементах, если бы они непосредственно были открыты для реагирующей смеси, т.е. встроены непосредственно в стенку реактора.

Данное изобретение не имеет недостатков ранее известных процессов, а предложенные устройство и реактор позволяют вводить электромагнитное излучение в реактор при условиях протекания свободнорадикальных реакций в газовой фазе.

Краткое описание чертежей

В дальнейшем изобретение поясняется описанием предпочтительных вариантов воплощения со ссылками на сопровождающие чертежи, на которых

фиг.1 изображает предпочтительный вариант выполнения устройства для получения свободных радикалов из промоторов диссоциации с помощью электромагнитного излучения и ввода продувочного газа в свободнорадикальный газофазный реактор (продольное сечение) согласно изобретению;

фиг.2 изображает модифицированный вариант устройства на фиг.1 (продольное сечение) согласно изобретению;

фиг.3 изображает еще один модифицированный вариант устройства на фиг.1 (продольное сечение) согласно изобретению;

фиг.4 изображает трубчатый реактор и устройство, приведенное на фиг.1 (продольное сечение) согласно изобретению.

Описание предпочтительных вариантов воплощения изобретения

На фиг.1 изображен предпочтительный вариант устройства для введения электромагнитного излучения и его расположение в реакторе.

Держатель, имеющий резьбу 52 и проходящую по окружности герметизирующую кромку 53, приварен к изгибу трубки реактора. Конический элемент 54, концу которого может быть придана форма сопла и который, например, может иметь в сечении внутренней поверхности форму шестиугольника 55 для облегчения закручивания, вворачивается в этот держатель. Когда конический элемент 54 вворачивается в держатель 56, он совместно с герметизирующей кромкой 53 держателя образует надежное при условиях реакции герметичное соединение. Этот способ герметизации описан в патенте Германии DE-A-4420368. Соединение может быть дополнительно герметизировано с помощью уплотняющей прокладки (на фиг.1 не показана).

Еще один конический элемент 57 содержит оптически прозрачное окно 58, например, из плавленого кварца, которое может быть покрыто оптически полупрозрачным металлическим слоем 59, причем желательно, чтобы металл являлся катализатором гидрирования, лучше всего металлом платиновой группы, и может вворачиваться в держатель 56 с использованием аналогичного способа герметизации.

Оптическое окно закрепляется между держателями 60, 61, которые на обращенных к нему сторонах имеют идущие по кругу углубления 62, в которые вставляются уплотнители 63, 64, желательно металлические, а лучше всего золотые.

Окно 58 прижимается к держателю 61 держателем 60. Это достигается прикручиванием держателя 60 к опорному кольцу или опорной колодке 65, которое/ые снабжены, например, глухими отверстиями 66.

Держатели 60 и 61, углубление 62 и более толстый уплотнитель имеют такие размеры, чтобы при скручивании сборки устанавливалось допустимое давление со стороны уплотнителя и оптическое окно не повреждалось.

В промежуточном пространстве между элементами 54 и 57 проходит одна или несколько линий, подводящих газ, и образован отсек 67, который отделен от реакционной области 68 и внешнего пространства 69.

Свободнорадикальные газофазные реакции происходят в реакционной области 68. Желательно, чтобы в случае трубчатого реактора вся сборка устанавливалась на изгибе реакторной трубы, который выходит за реальную излучательную зону печи и термически от нее изолирован.

Продувочный газ, например азот или какой-либо из благородных газов, или смесь инертного газа с промотором, или газообразный промотор, попадают через впуск 70 в отсек 67. Газ после отсека, через канал 71, попадает в реакционную область.

В результате постоянной продувки отсека 67 оптическое окно оказывается отделенным от реакционной области 68 газовой подушкой. Углеродные предшественники, такие как ацетилен, бензол или хлоропрен, вследствие этого не могут достигнуть окна и образовать там углеродный налет.

В предпочтительном варианте осуществления оптическое окно покрывается оптически полупрозрачным металлическим слоем, причем таким, чтобы металл был катализатором гидрирования, например палладием.

Если затем подмешивать в промоторный газ небольшое количество водорода, то количество углеродного предшественника, который, несмотря на продувку, достигает оптического окна, на его поверхности уменьшится. В результате углеродный осадок не сможет образовываться на поверхности окна.

Излучение от источника проходит через оптическое окно и передает энергию молекулам реагирующей смеси в реакционной области 68 и любому промотору, находящемуся в отсеке 67. Это генерирует свободные радикалы (фотолиз), которые стимулируют реакцию, протекающую в реакционной области 68.

Получение свободных радикалов и их последующая транспортировка в реакционную область обычно затруднительны, так как свободные радикалы быстро рекомбинируют при преобладающих давлениях, обычно 9-25 бар.

Тем не менее в случае конфигурации, предложенной согласно изобретению, излучение проходит через весь отсек и также через реакционную область. В результате необходимые свободные радикалы формируются в канале 71 и в зоне реакционной области, прилегающей к каналу, и, следовательно, заведомо могут участвовать в реакции. Таким образом, нет необходимости, чтобы продувочный газ имел высокую скорость потока.

В другом предпочтительном варианте осуществления внешняя стенка устройства, в частности часть устройства, которая выступает в реакционную область, может быть покрыта инертным материалом, например оксидом металла, керамикой, нитридом бора или нитридом кремния.

В другом предпочтительном варианте осуществления (фиг.2) отсек 67 имеет дополнительный газовый ввод 72, который близко подходит к поверхности оптического окна 58. Это позволяет продувать окно и область вокруг газом, в то время как остальная часть продувочного газа подается через ввод 70. Такое расположение позволяет даже лучше защитить оптическое окно от углеродного осадка.

В еще одном варианте осуществления (фиг.3) дополнительный газовый ввод 72 продолжается в направлении канала 71 и служит для впуска газообразных промоторов. Газовый ввод 70 служит только для подачи продувочного газа, желательно инертного. В этом случае образование свободных радикалов из промоторов происходит вблизи реакционной области 68, далеко от оптического окна 58. Это дает дополнительную защиту оптического окна 58 от возможности осаждения на него углерода.

Что касается источника излучения, то возможно использование любого устройства, излучение от которого подходит для фотолиза компонентов реагирующей смеси. Это может быть ультрафиолетовая лампа (например, лампа на парах металла) или лазер. При использовании лазера в предлагаемой конфигурации не имеет значения, будет ли используемый лазер импульсным или непрерывным. Эксимерные лампы также могут использоваться в качестве светового источника.

Излучение может вводиться различными путями. Например, свет может быть введен по световоду. Световой источник также может, например, при использовании лампы на парах металла или эксимерной лампы, быть помещен прямо в элементе 57, позади оптического окна. В этом случае желательно, чтобы обеспечивалось достаточное охлаждение. Свет также может вводиться в элемент через другое окно и направляться зеркалами на окно 58.

В данной реализации для ввода света используется устройство, аналогичное описанному в патенте Германии DE-A-19845512 и в патенте Германии DE-Gbm-20003712. Ранее известные устройства предназначались для наблюдения за процессами в камере сгорания работающего двигателя внутреннего сгорания и изготавливались, например, в форме свечи зажигания. Помимо их прямого назначения, т.е. визуального наблюдения процессов сгорания, такие устройства, благодаря их устойчивости к воздействию давлений и температур, также подходят для организации ввода света в химические реакторы, где давления и температуры подобны преобладающим внутри работающего двигателя внутреннего сгорания.

В случае использования таких устройств можно обойтись без оптического окна (фиг.1, 2, 3), с описанной герметизирующей системой. Передающая свет линия, выполненная в форме свечи зажигания, тогда бы вворачивалась в разделительную стенку, расположенную в элементе 57.

Изображенное на фиг.1 устройство может монтироваться в обычном трубчатом реакторе для проведения свободнорадикальных реакций в газовой фазе.

Возможное расположение устройства согласно настоящему изобретению на реакторной трубе показано на фиг.4. Держатель, имеющий резьбу и выступ 53, который образует герметизирующую кромку, приваривается к реакторной трубе.

Если устройство (фиг.1) затем вворачивается в держатель, как объяснялось выше, образуется надежное герметичное соединение.

Трубчатый реактор содержит печь и реакторную трубу.

Вообще, такие печи, использующие основные источники энергии, например нефть или газ, разделяются на излучательную зону 16 и зону 17 конвекции.

В излучательной зоне 16 тепло, необходимое для пиролиза, переносится к реакторной трубе излучением от стенок печи, нагретых горелкой.

В зоне 17 конвекции энергия горячих газов, выходящих из излучательной зоны, высвобождается путем конвективной передачи тепла. Исходное вещество для свободнорадикальной газофазной реакции таким путем может быть предварительно нагрето, испарено или перегрето. Также возможна генерация пара и/или предварительный нагрев окисляющего воздуха.

В типичной конфигурации, как описано, например, в европейском патенте EP-A-264065, исходное вещество для свободнорадикальной газофазной реакции сначала в жидком виде предварительно нагревается в зоне конвекции реактора, а затем испаряется в специальном испарителе снаружи реактора. Затем газообразное исходное вещество для свободнорадикальной газофазной реакции снова направляется в зону конвекции и перегревается, с этого момента может идти реакция пиролиза.

После того как исходное вещество для свободнорадикальной газофазной реакции перегрето, оно попадает в зону облучения, где происходит термическая диссоциация до образования продуктов (смеси).

Из-за высокой температуры, преобладающей в зоне облучения и при входе в зону конвекции, желательно, чтобы устройство (фиг.1) не размещалось непосредственно в этих зонах, так как иначе установление определенной температуры нагретого газа или газовой смеси, содержащих свободные радикалы и вводимых для возбуждения реакции диссоциации, становится невозможным или труднореализуемым.

По этой причине предпочтение отдается расположению, представленному на фиг.4.

Здесь реактор дополнен еще по меньшей мере двумя ненагреваемыми отсеками 18, которые могут быть термически изолированы. Петли реакторной трубы выступают из зоны облучения или конвекционной зоны 16, 17 внутрь этих отсеков 18. Устройство 19 для ввода электромагнитного излучения затем монтируется в этих петлях, желательно в местах изгибов, и входит в прямые отрезки этих петель, т.е. встраивается в реакторную трубу таким образом, чтобы газовый поток реагирующей смеси мог бы подвергаться электромагнитному облучению в этом месте.

Петли реакторной трубы, выступающие из зоны облучения или зоны 16, 17 конвекции в ненагреваемые отсеки 18, желательно должны быть снабжены термической изоляцией. В этом случае внешние стенки отсеков могут не нести термоизолирующей функции.

1. Устройство для ввода электромагнитного излучения в реактор, для проведения свободнорадикальных газофазных реакций, содержащее отсек, отделенный от области реакции в реакторе,

по меньшей мере один канал, соединяющий область реакции в реакторе с отсеком,

по меньшей мере одну линию подачи для ввода продувочного газа в отсек,

по меньшей мере один источник электромагнитного излучения, который расположен так, что

электромагнитное излучение проходит через отсек и примыкающую к отсеку область реакции в реакторе,

линию подачи, предназначенную для подачи газового потока и открывающуюся в реактор.

2. Устройство по п.1, отличающееся тем, что имеет оптическое окно и/или другую линию, подводящую излучение в отсек.

3. Устройство по п.2, отличающееся тем, что оптическое окно и/или прозрачный конец другой подводящей излучение линии покрыты оптически полупрозрачным слоем, содержащим металл, являющийся катализатором гидрирования.

4. Устройство по п.1, отличающееся тем, что содержит два конических элемента (54, 57), расположенных таким образом, что между элементами (54, 57) образовано промежуточное пространство, содержащее по меньшей мере одну газоподающую линию, образующее отсек (67), отделенный от реакционного пространства (68) и внешнего пространства (69), при этом элемент (57), расположенный на наибольшем удалении от реактора, содержит оптически прозрачное окно (58) и/или другую светоподводящую линию.

5. Устройство по п.1, отличающееся тем, что снабжено излучающими устройствами, которые обеспечивают облучение всего отсека и примыкающей области реактора.

6. Устройство по п.4, отличающееся тем, что отсек (67) имеет дополнительный газовый ввод (72), который продолжается внутри отсека до поверхности оптического окна и/или другой светоподводящей линии и обеспечивает продувку оптического окна и/или светоподводящей линии и прилегающей области инертным газом или инертным газом в смеси с водородом.

7. Устройство по п.4, отличающееся тем, что отсек (67) имеет дополнительный газовый ввод (72), который продолжается в направлении канала (71) и служит для введения газообразного промотора.

8. Реактор для проведения свободнорадикальных реакций в газовой фазе, содержащий

линию, для подачи газового потока, сообщенную с реактором,

по меньшей мере одно устройство, заявленное по п.1 и содержащее отсек и отверстие для сообщения с реактором для введения в реактор электромагнитного излучения,

линию для подачи продувочного газа, сообщенную с отсеком устройства,

источник продувочного газа, соединенный с линией, для подачи продувочного газа,

если требуется, нагревательный элемент для нагрева продувочного газа в линии подачи,

нагревательный элемент для нагрева и/или поддержания температуры газового потока в реакторе,

выходную линию для отвода потока продуктов свободнорадикальной газофазной реакции из реактора.

9. Реактор по п.8, отличающийся тем, что имеет реакторную трубу, к которой приварен держатель (53), имеющий выступ и резьбу (52), и в который вворачивается устройство, заявленное по п.1.

10. Реактор по п.9, отличающийся тем, что содержит печь и реакторную трубу по форме меандра, проходящую через печь, причем печь имеет излучательную зону (16), зону (17) конвекции и по меньшей мере один ненагреваемый отсек (18), в который выступают петли реакторной трубы из излучательной зоны (16) или зоны (17) конвекции или из которого петли реакторной трубы входят в излучательную зону (16) или зону (17) конвекции, и, по меньшей мере, одно устройство по п.1, расположенное в по меньшей мере одном отсеке (18) и установленное в реакторной трубе таким образом, что электромагнитное излучение может быть введено в газовый поток реагирующей смеси в этих точках.

11. Реактор по п.8, отличающийся тем, что за ним установлен адиабатический вторичный реактор.



 

Похожие патенты:

Изобретение относится к области технологии нефтепереработки и может быть использовано для модификации физико-химических, а также эксплутационных характеристик нефтей и нефтепродуктов.
Изобретение относится к области первичной переработки нефти, в частности к вакуумной перегонке остатков атмосферного фракционирования нефти. .

Изобретение относится к области химической технологии и может быть использовано для селективного нетермического управления активностью химических реагентов и, как следствие - скоростью химических реакций.

Изобретение относится к химической технологии, конкретно применительно к процессам получения хлора из хлористого водорода окислением последнего кислородом, и устройствам, обеспечивающим проведение процесса.

Изобретение относится к способу и установке, которые предназначены для обезвреживания и уничтожения различного рода высокотоксичных отходов, в частности таких, которые хранятся в контейнерах.

Изобретение относится к способу получения этиленненасыщенных галогенсодержащих алифатических углеводородов путем термического расщепления насыщенных галогенсодержащих алифатических углеводородов.

Изобретение относится к технологии переработки нефти и нефтепродуктов и может быть использовано на установках с атмосферными и вакуумными колоннами, предназначенными для фракционной перегонки нефти.

Изобретение относится к области ускорения процесса преобразования вещества созданием дополнительного, по отношению к основному, вспомогательного физического воздействия на вещество, помещенное в электропроводящий корпус для основного воздействия.

Изобретение относится к обработке фторуглеродного сырья. .

Изобретение относится к новому способу получения метанола и других алифатических спиртов путем газофазного взаимодействия углеводородных газов с водяным паром под действием ультрафиолетового излучения и может быть использовано в химической, нефтехимической, нефтеперерабатывающей и нефтегазодобывающей промышленности.

Изобретение относится к технологии переработки металл/органического ламината, содержащего металл, ламинированный с органическим веществом, пиролизом органического вещества

Изобретение относится к получению полимерных биосовместимых покрытий на поверхности частиц и может быть использовано в фармакологии, медицине, ветеринарии, косметологии для создания систем векторной доставки лекарственных и биологически активных веществ

Изобретение относится к области фотокатализа и может быть использовано для проведения гетерогенных фотокаталитических реакций, а также для очистки воздуха от органических примесей

Изобретение относится к усовершенствованному способу получения уксусной кислоты, который включает следующие стадии: (а) карбонилирование метанола и/или его реакционноспособного производного моноксидом углерода в первой реакционной зоне, включающей жидкую реакционную смесь, содержащую катализатор карбонилирования и промоторный металл для катализатора карбонилирования, метилиодид, метилацетат, уксусную кислоту и необязательно воду, где в жидкой реакционной смеси находятся в равновесии по меньшей мере первый растворимый каталитический материал с промоторным металлом и второй растворимый каталитический материал с промоторным металлом, причем среди материалов, находящихся в равновесии, первый каталитический материал с промоторным металлом является наименее промоторно активным; (б) отвод из упомянутой первой реакционной зоны жидкой реакционной смеси совместно с растворенными и/или захваченными моноксидом углерода и другими газами; (в) необязательное пропускание упомянутой отводимой жидкой реакционной смеси через одну или несколько последующих реакционных зон для израсходования по меньшей мере части растворенного и/или захваченного моноксида углерода; (г) направление упомянутой жидкой реакционной смеси со стадии (б) и необязательной стадии (в) на одну или несколько стадий разделения однократным равновесным испарением с получением паровой фракции, которая включает способные конденсироваться компоненты и отходящий газ низкого давления, причем способные конденсироваться компоненты содержат получаемую уксусную кислоту, метилиодид, метилацетат и необязательную воду, а отходящий газ низкого давления содержит моноксид углерода и другие газы, растворенные и/или захваченные отводимой жидкой реакционной смесью; и жидкой фракции, которая включает катализатор карбонилирования, промоторный металл для катализатора карбонилирования и уксусную кислоту как растворитель; (д) возврат жидкой фракции со стадии разделения однократным равновесным испарением в первую реакционную зону; (е) определение (I) концентрации первого каталитического материала с промоторным металлом и/или (II) отношения концентрации первого каталитического материала с промоторным металлом к концентрации второго каталитического материала с промоторным металлом, находящихся в равновесии между собой, содержащихся в жидкой реакционной смеси на любой из стадий с (а) по (г) и/или присутствующих в жидкой фракции на стадии (д); и (ж) поддержание (I) и/или (II) ниже предопределенного значения

Изобретение относится к способу плазменно-химического осаждения из газовой фазы для нанесения покрытия или удаления материала с внутренней поверхности полого изделия

Изобретение относится к способам получения кристаллических алюмосиликатов, с помощью которых производится удовлетворение потребностей использующих их по прямому назначению соответствующих отраслей промышленного производства, а именно: электротехнической, химической, а также к устройствам для осуществления такого рода технологий

Изобретение относится к физико-химическим способам получения ультрадисперсных порошков (нанопорошков) и покрытий из электропроводящих материалов, основанным на газофазном синтезе нанопорошка

Изобретение относится к способу получения фотокаталитических покрытий диоксида титана на стекле, а также к составам, используемым для получения таких покрытий

Изобретение относится к системе, использующей тепловую энергию солнечного происхождения совместно с микроволнами и плазмами для получения, главным образом, моноксида углерода (СО) и водорода (Н2) из углеродных соединений (биомассы, бытовых отходов, осадка сточных вод, ископаемого угля)
Наверх