Порошкообразный материал для истираемых покрытий и истираемое покрытие

Изобретение относится к области порошкообразных материалов, предназначенных для изготовления истираемых герметичных уплотнений, и может быть использовано в турбомашинах. Порошкообразный материал выполнен из сплава на основе алюминия, содержащего марганец или кальций в количестве от 5 мас.% до 20 мас.%. Из порошкообразного материала выполнено истираемое покрытие. Получен материал для образования истираемого покрытия для уплотнений, сохраняющий удовлетворительное состояние при температурах до 550°С. 2 н. и 12 з.п. ф-лы, 5 табл.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится к области порошкообразных материалов, предназначенных для изготовления истираемых герметичных уплотнений. В частности, оно может применяться в турбомашинах.

Уровень техники

Материалы, способные к истиранию, находят в настоящее время разнообразное применение; в частности, они используются в герметичных уплотнениях. Истираемые уплотнения используются, например, во вращающихся частях турбомашин, например в компрессорах, с целью уменьшения газовых или воздушных утечек, которые могут сказаться на производительности турбомашины.

Компрессор турбомашины состоит из множества лопаток, закрепленных на валу, установленном в неподвижном кольце. В процессе работы вал и лопатки вращаются внутри кольца компрессора.

Для обеспечения эффективной работы турбомашины необходимо по возможности сократить утечки воздуха и газов в компрессорных секциях машины. Такое сокращение утечек достигается минимизацией зазоров, имеющихся, во-первых, между концами лопаток и внутренней поверхностью кольца компрессора и, во-вторых, между междисковыми обечайками и внешней поверхностью спрямляющего аппарата. В то же время термическое и центробежное расширение лопаток компрессора затрудняет получение малых зазоров между концами лопаток и внутренней поверхностью кольца компрессора.

В этих условиях внутренняя поверхность кольца компрессора обычно покрывается слоем истираемого материала, а вал компрессора устанавливается в кольце компрессора таким образом, чтобы концы лопаток оказались как можно ближе к истираемому покрытию. Функция такого истираемого покрытия сводится, таким образом, к образованию уплотнения между подвижными и неподвижными частями компрессора турбомашины.

При контакте подвижных и неподвижных частей компрессора уплотнение из истираемого материала позволяет получить уменьшенный зазор без значительного повреждения вступающих в контакт деталей ротора. Нежелательный взаимный контакт между подвижными и неподвижными частями компрессоров происходит в основном из-за различного расширения подвижных и неподвижных частей компрессоров при работе компрессоров в переходном режиме. Явления пластичности лопаток, дисбаланса и вибрации также могут приводить к такому нежелательному контакту.

В случае такого нежелательного контакта уплотнение должно отвечать следующим требованиям:

- концы лопаток не должны подвергаться чрезмерному износу. Более того, хотя незначительный износ и может быть допущен, предпочтительно, чтобы при таком контакте повреждению подвергалось уплотнение;

- контакт между концами лопаток и уплотнением не должен приводить к нагреву лопаток; в противном случае, в частности, при использовании лопаток из титановых сплавов такой нагрев может привести к возгоранию;

- уплотнения должны быть устойчивы к эрозии, вызываемой газовым потоком, циркулирующим внутри компрессора;

- уплотнения должны также сохранять способность к истиранию в окисляющей и коррозионной среде. Повышение температуры внутри компрессора способствует окислению, а газообразные продукты сгорания, используемые в турбомашинах, и внешний воздух вызывают коррозию;

- при износе уплотнений их остатки не должны забивать отверстия, предназначенные для охлаждения компрессоров;

- наконец, истираемые материалы, образующие уплотнения, должны быть устойчивы к высоким температурам и не подвержены таким изменениям, как затвердевание, растрескивание или расслаивание, которые могли бы снизить их способность к истиранию. Истираемый материал должен выдерживать различные циклы работы турбомашины, не теряя своих свойств.

Были предложены различные порошкообразные материалы, предназначенные для образования истираемых уплотнений. Эти материалы можно разделить на две основные категории: материалы, содержащие металлические порошки на кремниевой основе (например, материал, содержащий сплав AlSi и органический порошок), и материалы, содержащие металлические порошки на основе хрома и никеля (например, материал, содержащий сплав NiCrAl и керамический, органический или глиняный порошок). Каждая из этих категорий истираемых материалов характеризуется определенными недостатками.

Материалы на кремниевой основе обладают, в сущности, удовлетворительными характеристиками истираемости и эрозионной стойкости, но имеют лишь ограниченное применение при высоких температурах. Известен, например, порошковый материал, описанный в патенте США № 5434210. Использование этого материала возможно при температурах примерно до 400°С. При превышении этой температуры металлическая матрица этого материала сжимается и уплотняется, что может привести к износу концов взаимодействующих с ним лопаток.

Материалы на основе хрома и никеля относительно стабильны и устойчивы к высоким температурам, но не обладают достаточной способностью к истиранию и сопротивляемостью эрозии, особенно если они применяются в сочетании с лопатками компрессоров, изготовленными из титановых сплавов без покрытия. Например, сплав NiCrAl, имеющий хорошие температурные характеристики, отличается относительно высокой жесткостью и вызывает чрезмерный износ лопаток.

Для разрешения названных трудностей на концы лопаток может быть нанесено защитное покрытие. Использование такого покрытия оказывается, однако, чрезвычайно дорогостоящим.

Раскрытие изобретения

Таким образом, задачей, на решение которой направлено настоящее изобретение, является создание порошкообразного материала, предназначенного для образования истираемого покрытия для уплотнений, отвечающего перечисленным выше требованиям.

Другой задачей, решаемой изобретением, является создание истираемого покрытия, сохраняющего удовлетворительное состояние при использовании при температурах, доходящих до 550°С.

Еще одной задачей является создание истираемого уплотнения, пригодного к использованию с лопатками или с их уплотнительными элементами из титановых сплавов без нанесения на их концы защитного покрытия.

Для решения поставленной задачи предлагается порошкообразный материал, предназначенный для создания истираемых покрытий и характеризующийся тем, что содержит металлический порошок, преимущественно на основе алюминия, а также кальций или марганец.

Этот новый порошкообразный материал обладает лучшими термическими характеристиками, нежели материалы, используемые в настоящее время для образования истираемых покрытий. Заявителем было обнаружено, что температура эвтектического плато сплава AlMn или AlCa значительно выше аналогичного значения, например, для сплава AlSi, что позволяет достигать температур порядка 550°С без трансформации или разрушения материала.

Предпочтительно к материалу добавляется органический порошок, увеличивающий пористость получаемого покрытия, облегчающий истирание при контакте подвижных и неподвижных частей и обеспечивающий возможность повышения температуры покрытия.

Кроме того, добавление твердой смазки из керамического порошка позволяет получить дополнительное преимущество достаточного разделения слоев для предотвращения нагревания лопаток при контакте подвижных и неподвижных частей. Полученный порошкообразный материал отвечает, таким образом, требованиям, перечисленным выше. Он хорошо подходит для образования истираемого покрытия, в частности, для создания уплотнений компрессоров турбомашин.

Предпочтительно керамический порошок содержит один из следующих компонентов: нитрид бора, дисульфид молибдена, графит, тальк, бентонит и слюду, а органический порошок содержит один из следующих компонентов: сложный полиэфир, полиметилметакрилат и полиимид.

В предпочтительном варианте содержание металлического порошка составляет от 65 мас.% до 95 мас.%, керамического порошка - от 3 мас.% до 20 мас.%, а органического порошка - от 5 мас.% до 20 мас.% материала.

Металлический порошок может также содержать один или несколько из следующих дополнительных элементов: хром, молибден, никель, кремний и железо. Содержание марганца или кальция в металлическом порошке составляет предпочтительно от 5 мас.% до 20 мас.%, а содержание дополнительных элементов не превышает 10 масс.% металлического порошка.

В предпочтительном варианте осуществления изобретения металлический порошок изготавливается из сплава AlMn5, керамический порошок - из гексагонального нитрида бора, а органический порошок - из сложного полиэфира.

Осуществление изобретения

Порошкообразный материал по изобретению предназначен для образования истираемого материала, например покрытия для уплотнений компрессоров или колец турбин.

Порошкообразный материал состоит в основном из металлического порошка, соответствующего сплаву преимущественно на основе алюминия.

Вторым основным металлическим элементом этого сплава может быть марганец или кальций, содержание которого может составлять от 5 мас.% до 20 мас.% металлического порошка.

Металлический порошок (типа AlMn или AlCa) может, кроме того, содержать один или несколько из следующих дополнительных металлических элементов: хром, молибден, никель, кремний и железо. Содержание каждого из этих дополнительных элементов по отдельности не превышает 5 мас.% металлического порошка, а суммарное содержание этих дополнительных элементов не превышает 10 мас.%.

В предпочтительном варианте порошкообразный материал содержит также органический порошок, содержащий один или несколько из следующих компонентов: сложный полиэфир, полиметилметакрилат и полиимид. Этот порошкообразный материал может также содержать любой другой материал типа полимера, например полиэтилен, поливинилацетат или полиарамид.

Кроме того, к материалу в оптимальном варианте может быть добавлен керамический порошок. Он состоит из одного или нескольких следующих компонентов из группы твердых керамических смазок: нитрид бора, дисульфид молибдена, графит, тальк, бентонит, слюда. Этот порошкообразный материал может также быть составлен из других слоистых материалов на основе силикатов, как, например, каолина и других глин.

Подготовленные таким образом металлический, органический и смазочный порошки смешиваются, предпочтительно, в следующей пропорции: содержание металлического порошка составляет от 65 мас.% до 90 мас.% материала, содержание керамического порошка составляет от 5 мас.% до 20 мас.%, а содержание органического порошка - от 5 мас.% до 15 мас.%.

Смешивание порошков может быть осуществлено механически. Эта процедура заключается в механическом смешивании составляющих и в получении, под воздействием сил сжатия и сдвига в смесителе, агломератов, образованных всеми исходными компонентами.

Смешивание может, однако, быть осуществлено и другими средствами, например прессованием и сушкой или спеканием и измельчением.

Согласно предпочтительному варианту осуществления изобретения порошкообразный материал состоит из металлического порошка из сплава алюминия и марганца (АlМn5), керамического порошка из гексагонального нитрида бора (hBN) и органического порошка из сложного полиэфира (полиэстера, ПЭ). В оптимальном 5 варианте содержание сплава АlМn5 составляет около 75 мас.% материала, содержание гексагонального нитрида бора составляет около 15 мас.% материала, а содержание сложного полиэфира составляет около 10 мас.% материала.

Полученный таким образом порошкообразный материал наносится методом термического напыления при помощи известных технологий (например, плазменного или пламенного напыления) для образования истираемого покрытия.

В оптимальном варианте истираемое покрытие может быть подвергнуто термической сублимации для создания в материале полостей и увеличения степени его пористости. Такая сублимация служит для удаления органического порошка в целях проведения испытаний в условиях эксплуатации, близких к реальным, в которых устранение органических компонентов неизбежно.

Эксперимент

Порошкообразная смесь, предназначенная для термического нанесения, была приготовлена путем механического смешивания 75 мас.% порошка АlМn5, 10 мас.% ПЭ и 15 масс.% hBN. Подложка на основе никеля была покрыта слоем NiAl5. Полученный таким образом порошкообразный материал был нанесен на эту подложку плазменным напылением. Параметры напыления, использованные в настоящих испытаниях, приведены в следующей таблице:

Газ плазмыАргонВодород
Расход (л/мин.)50-702,5-5
Давление (кПа)100-150120-170
Сила тока (А)500
Напряжение (В)31
Расстояние нанесения130 мм

Использованный для нанесения инжектор обладал следующими характеристиками:

Диаметр сопла6 мм
Размер инжектора2 мм
Угол инжектора90°
Скорость перемещения материала1600 мм/с
Шаг сканирования5,5 мм

Покрытие, полученное в результате напыления, представляет собой истираемое покрытие средней толщиной около 3 мм. Твердость покрытия была измерена при помощи шкалы R15Y по Роквеллу, определяющей твердость покрытия. В настоящем случае измеренное значение по шкале R15Y для испытываемого покрытия составило в среднем около 70.

Образец подложки с нанесенным покрытием был затем подвергнут сублимации при температуре 500°С в течение четырех часов. По окончании этой сублимации значение по шкале R15Y для покрытия составило в среднем около 60.

Покрытие было испытано на истирание на специальном стенде с использованием лопаток из титанового сплава без покрытия. Износостойкость этого герметичного уплотнения измерялась при следующих условиях:

Температура испытанийОкружающая температура
Количество лопаток3
Толщина лопаток0,8 мм
Скорость крайних точек лопаток200 м/с
Скорость заглубления лопаток0,15 мм/с
Глубина заглубления0,5 мм

Все проведенные измерения основывались на следующих принципах: приложение усилия по трем осям (заглубление Fp, резание Fco и точение Fch) и измерение износа лопаток. В приведенной ниже таблице I содержатся результаты этих измерений в сравнении с результатами, полученными на известном покрытии, изготовленном из смеси AlSi, органического порошка и гексагонального нитрида бора (таблица II).

Таблица I
Состояние покрытияУсилие(Н)Износ лопаток (мм)
FpFcoFch№1№2№3
Исходное3,23,22,9+0,01+0,03+0,01
250 часов при 500°С2,8542,4+0,01+0,03+0,05
500 часов при 500°С2,65,62,50+0,02+0,01
500 часов при 550°С3,53,74,9+0,01+0,010
Таблица II
Состояние покрытияУсилие (Н)Износ лопаток (мм)
fpFcoFch№1№2№3
Исходное112,250,500-0,01
250 часов при 500°С8,72,80,5+0,02+0,03+0,02
500 часов при 500°С42,80,5+0,0200

Из этих результатов видно, что полученное описанным образом истираемое уплотнение обладает лучшими свойствами сопротивляемости эрозии, чем классическое уплотнение, охарактеризованное в таблице II. Уплотнение по изобретению подвергается износу при контакте с лопатками из металлического, а именно титанового, сплава, не вызывая износа последних. Металлургическая стабильность этого уплотнения позволяет ему работать при температурах до 550°С, в отличие от классического уплотнения, описанного в таблице II, которое не выдерживает столь высоких температур.

1. Порошкообразный материал, предназначенный для образования истираемого покрытия, отличающийся тем, что он содержит металлический порошок из сплава на основе алюминия, содержащего марганец или кальций, в котором содержание марганца или кальция составляет от 5 до 20 мас.%.

2. Материал по п.1, отличающийся тем, что он дополнительно содержит органический порошок.

3. Материал по п.2, отличающийся тем, что содержание органического порошка составляет от 5 до 15 мас.% указанного материала.

4. Материал по п.2 или 3, отличающийся тем, что органический порошок содержит один из следующих компонентов: сложный полиэфир, полиметилметакрилат и полиимид.

5. Материал по п.1, отличающийся тем, что он дополнительно содержит керамический порошок.

6. Материал по п.5, отличающийся тем, что содержание указанного керамического порошка составляет от 5 до 20 мас.% материала.

7. Материал по п.5 или 6, отличающийся тем, что керамический порошок содержит один из следующих компонентов: нитрид бора, дисульфид молибдена, графит, тальк, бентонит и слюда.

8. Материал по п.1, отличающийся тем, что металлический порошок содержит один или несколько следующих компонентов: хром, молибден, никель, кремний и железо.

9. Материал по п.8, отличающийся тем, что содержание дополнительного компонента или дополнительных компонентов металлического порошка составляет не более 10 мас.% металлического порошка.

10. Материал по п.1, отличающийся тем, что содержание металлического порошка составляет от 65 до 90 мас.% материала.

11. Материал по п.1, отличающийся тем, что металлический порошок является сплавом АlМn5.

12. Материал по п.11, отличающийся тем, что он дополнительно содержит гексагональный нитрид бора и сложный полиэфир.

13. Материал по п.12, отличающийся тем, что содержание сплава АlМn5 составляет 75 мас.% материала, содержание гексагонального нитрида бора составляет 15 мас.% материала, а содержание указанного сложного эфира составляет 10 мас.% материала.

14. Истираемое покрытие для образования герметичного уплотнения, отличающееся тем, что получено путем термического напыления порошкообразного материала по любому из пп.1-13.



 

Похожие патенты:
Изобретение относится к области технологии нанесения покрытий для защиты деталей от коррозионного воздействия агрессивных сред, а также для придания деталям заранее заданных свойств, например высокой износостойкости и коррозионной стойкости.
Изобретение относится к титановому изделию с повышенной коррозионной стойкостью. .

Изобретение относится к способам получения квазикристаллических материалов, а именно к способам получения покрытий из квазикристаллических сплавов системы Al-Cu-Fe. .
Изобретение относится к порошковой металлургии, в частности к материалам для газотермического напыления покрытий. .

Изобретение относится к алюминиевым сплавам для покрытия поверхностей деталей, таких как подшипники скольжения, контактные кольца, буксы, валы или шатуны. .

Изобретение относится к полученным распылением порошкам, предназначенным для термического нанесения покрытий на алюминиевые подложки, а также к получению и применению данных порошков.

Изобретение относится к области металлургии и может быть использовано при нагреве непрерывнолитых слябов из низколегированной стали под прокатку и последующей их прокатке.

Изобретение относится к способу изготовления пористых газопоглотительных устройств с пониженной потерей частиц и к устройствам, изготавливаемым этим способом. .

Изобретение относится к новым химическим соединениям, в частности к хром-кобальт-иттриевому алюминиду с низким содержанием иттрия состава Cr0,180 Co0,215 Al0,60 Y0,005, который может быть применен в качестве материала для жаростойких плазменных покрытий никелевых сплавов, работающих при 900-1000oС в длительном режиме.
Изобретение относится к металлургии литейных сплавов на основе алюминия, используемых для изготовления деталей с большим объемом механической обработки, работающих при высоких температурах.
Изобретение относится к области металлургии, в частности к составам сплавов на основе алюминия, которые могут быть использованы в машиностроении. .

Изобретение относится к области металлургии, в частности к сплавам на основе алюминия, и может быть использовано в машиностроении и других областях промышленности.
Изобретение относится к металлургии, в частности, к способам модифицирования литейных алюминиево-кремниевых сплавов доэвтектического состава. .
Изобретение относится к области металлургии и может быть использовано при создании эффективных лигатур и модификаторов для алюминиевых сплавов, применяемых в оборонных и гражданских отраслях промышленности.
Изобретение относится к области металлургии легких сплавов и может быть использовано для получения слитков и отливок из заэвтектических силуминов для изготовления изделий автомобильной и авиационной техники.
Изобретение относится к области металлургии, в частности к составам силуминов, которые могут быть использованы в авиационной, автомобильной, приборостроительной, судостроительной и электротехнической промышленности.
Изобретение относится к области металлургии, в частности к составам сплавов на основе алюминия, которые могут быть использованы в машиностроении, а также для изготовления посуды, монет.
Изобретение относится к области черной металлургии, в частности к ферросплавному производству. .

Изобретение относится к электроконтактной роликовой приварке порошковых материалов, в частности к устройству для подачи ферромагнитного порошка при электроконтактной приварке, и может быть использовано для восстановления изношенных и упрочнения рабочих поверхностей деталей типа тел вращения.
Наверх