Способ коррекции инерциальной навигационной системы

Изобретение относится к измерительной технике и может быть использовано для морских, воздушных и наземных объектов. Задачей изобретения является повышение точности бесплатформенной инерциальной системы путем создания способа коррекции инерциальной навигационной системы (ИНС). Поставленная задача решается тем, что по сигналам, поступающим с акселерометров, входящих в состав ИНС, определяют абсолютное ускорение по следующей зависимости:

где gx - показания акселерометра, измеряющего ускорение по продольной оси объекта, на котором установлена ИНС; gу - показания акселерометра, измеряющего ускорение по вертикальной оси; gz - показания акселерометра, измеряющего ускорение по поперечной оси объекта, на котором установлена ИНС; и в момент, когда абсолютное ускорение равно ускорению силы тяжести для местности, где находится ИНС, показания ИНС по углам тангажа и крена заменяют на значения, вычисленные по следующим зависимостям:.

 

Изобретение относится к измерительной технике и может быть использовано для морских, воздушных и наземных объектов.

Известен способ коррекции инерциальной навигационной системы (ИНС) космического аппарата при движении вне атмосферы [Патент РФ №2062989], заключающийся в измерении линейных относительных параметров по меньшей мере одного навигационного спутника, движущегося по известной орбитальной траектории, формировании по полученным данным вектора корректирующих параметров, повторении указанных операций в последовательные моменты времени в течение заданного интервала коррекции и проведении коррекции инерциальной навигационной системы с помощью сформированных корректирующих параметров, при этом на время проведения коррекции создают кажущееся ускорение космического аппарата в заданном фиксированном направлении инерциального пространства, в каждый последовательный момент времени измеряют кажущееся ускорение, запоминают полученное значение и формируют расширенный вектор корректирующих параметров с учетом ускорений, измеренных в предыдущий и текущий последовательные моменты времени.

Недостатком данного способа является невозможность его реализации в реальном масштабе времени (необходимо проводить измерения в разные моменты времени), а также большие требования к машинным ресурсам вычислителя, в частности в качестве алгоритма комплексной обработки информации предполагается использовать фильтр Калмана.

Известен также способ коррекции ИНС, основанный на измерении угловых относительных параметров двух звезд с помощью оптических визирных устройств - телескопов [Андреев В.Д. Теория инерциальной навигации. Корректирующие системы. - Наука, 1967, с.439-463]. Способ включает следующие операции, осуществляемые в течение заданного интервала коррекции:

вычисление векторов направлений на две звезды в приборной системе координат с помощью информации ИНС и информации о расположении звезд на небесной сфере;

измерение векторов направлений на две звезды в осях приборной системы координат с помощью оптических телескопов;

вычисление корректирующих параметров ИНС путем обработки вычисленных и измеренных значений векторов направлений на две заданные звезды;

осуществление коррекции ИНС.

Данный способ сложно применять вследствие громоздкости оптических визирных устройств (особенно на малогабаритных подвижных объектах), а также практически невозможно использовать на подвижных объектах, находящихся в приземном слое атмосферы.

Задачей изобретения является повышение точности бесплатформенной инерциальной системы путем создания способа коррекции инерциальной навигационной системы.

Поставленная задача решается таким образом, по сигналам, поступающим с акселерометров, входящих в состав ИНС, что определяют абсолютное ускорение по следующей зависимости

где gx - показания акселерометра, измеряющего ускорение по продольной оси объекта, на котором установлена ИНС;

gy - показания акселерометра, измеряющего ускорение по вертикальной оси;

gz - показания акселерометра, измеряющего ускорение по поперечной оси объекта, на котором установлена ИНС;

и в момент времени, когда абсолютное ускорение равно ускорению силы тяжести для местности, где находится ИНС, показания ИНС по углам тангажа (и крена (заменяют на значения, вычисленные по следующим зависимостям:

Сущность способа заключается в следующем.

По показаниям акселерометров, входящих в состав ИНС определяют абсолютное ускорение, действующее на объект, на котором установлена ИНС по формуле

где gx - показания акселерометра, измеряющего ускорение по продольной оси объекта, на котором установлена ИНС; gy - показания акселерометра, измеряющего ускорение по вертикальной оси; gz - показания акселерометра, измеряющего ускорение по поперечной оси объекта, на котором установлена ИНС. В момент времени, когда абсолютное ускорение, вычисленное по формуле

равно ускорению силы тяжести для местности, где находится ИНС (в большинстве случаев примерно 9,8 м/с2), производится коррекция ИНС по углам тангажа и крена. Этот момент времени соответствует равномерному движению объекта. Необходимо отметить, что для любого известного морского, воздушного или наземного подвижного объекта будет, по крайней мере, один момент времени, когда он будет двигаться равномерно. Для коррекции ИНС по формуле

находится истинное значение угла тангажа, а по формуле

находится истинное значение угла крена. Далее показания ИНС по углам тангажа и крена заменяются на вычисленные.

Необходимо отметить, что погрешность вычисления углов по формулам

зависит от погрешностей акселерометров, и они не нарастают со временем, в отличие от погрешностей ИНС в определении углов тангажа и крена, которые нарастают со временем, что в свою очередь также является достоинством предлагаемого способа.

Проведенное математическое моделирование подтвердило эффективность предлагаемого способа коррекции инерциальной навигационной системы.

Способ коррекции инерциальной навигационной системы, основанный на приеме сигналов, поступающих с акселерометров, входящих в состав ИНС, отличающийся тем, что определяют абсолютное ускорение по следующей зависимости:

,

где gx - показания акселерометра, измеряющего ускорение по продольной оси объекта, на котором установлена ИНС;

gy - показания акселерометра, измеряющего ускорение по вертикальной

оси;

gz - показания акселерометра, измеряющего ускорение по поперечной оси объекта, на котором установлена ИНС;

и в момент, когда абсолютное ускорение равно ускорению силы тяжести для местности, где находится ИНС, показания ИНС по углам тангажа ν и крена γ заменяют на значения, вычисленные по следующим зависимостям:

υ=-arcsin gx/g; γ=-arctg gz/gy.



 

Похожие патенты:

Изобретение относится к области измерительной техники и может быть использовано в навигации для определения угловых положений автоматических подводных, надводных и летательных аппаратов, в нефтепромысловой геофизике для определения углового положения буровой скважины.

Изобретение относится к области авиации и может быть использовано в приборном оборудовании летательного аппарата для упрощения восприятия и переработки информации.

Изобретение относится к оптико-электронной технике и может быть использовано при изготовлении оптических наблюдательных приборов. .

Изобретение предназначено для применения в области авиационного приборостроения, в частности в пилотажно-навигационном оборудовании летательных аппаратов (ЛА). Технический результат - повышение надежности и безопасности совершения посадки ЛА, увеличение точности формирования заданной траектории посадки. Способ управления ЛА при заходе на посадку включает измерение параметров движения ЛА, коррекцию, с помощью любого из известных методов комплексной обработки информации, погрешностей параметров движения по данным от спутниковой навигационной системы, формирование, на основе откорректированных координат ЛА и координат торцов взлетно-посадочной полосы (ВПП), курса ВПП, длины ВПП, дальности до ближнего торца ВПП, высоты ЛА относительно ВПП, автоматическое или ручное управление угловым положением ЛА по крену и тангажу с учетом сигналов углов отклонения по курсу и глиссаде, дополнен операциями, в соответствии с которыми для формирования заданной траектории посадки задают угол наклона траектории посадки, размещают под точкой стандартного размещения курсового радиомаяка на продолжении заданной траектории посадки виртуальный курсо-глиссадный радиомаяк (ВКГРМ) и формируют его пеленг и угол места, а углы отклонения по курсу и глиссаде от траектории посадки формируют соответственно как рассогласование пеленга ВКГРМ и курса ВПП и как рассогласование угла места ВКГРМ и заданного экипажем угла наклона траектории посадки. 5 ил.

Изобретение относится к комплексной системе управления траекторией летательного аппарата при заходе на посадку. Система включает инерциальную навигационную систему, систему воздушных сигналов, индикатор посадочных сигналов (ИПС), блок комплексной обработки информации (КОИ), спутниковую навигационную систему, блок памяти, блок определения параметров взлетно-посадочной полосы (ВПП), блок определения местоположения виртуального курсо-глиссадного радиомаяка (ВКГРМ), блок определения пеленга и дальности ВКГРМ, первый и второй сумматоры, блок определения угла места ВКГРМ. Технический результат заключается в повышении надежности и безопасности совершения посадки летательного аппарата. 7 ил.

Изобретение относится к измерительной технике и предназначено для непрерывной коррекции углов крена и тангажа подвижных объектов, в частности беспилотных летательных аппаратов. Изобретение предусматривает использование сигналов, соответствующих угловой скорости объекта, и сигнала, соответствующего земной скорости объекта, и комплексирование данных сигналов и сигналов, соответствующих линейным ускорениям, преобразованных с учетом параметров полета объекта, и адаптивную оценку крена и тангажа осуществляют посредством фильтра Калмана, в котором коэффициент усиления изменяется в зависимости от текущих значений модули перегрузки, угловых скоростей и земной скорости объекта. В процессе работы интенсивность коррекции адаптируется к отклонениям кажущейся вертикали от гравитационной. При этом происходит подавление влияния кажущегося ускорения, достаточное для обеспечения необходимой точности оценивания крена и тангажа. За счет этого зависимость маятниковой коррекции от вида движения объекта ослабляется до уровня, позволяющего использовать датчики ДУС и ДЛУ средней и низкой точности, в том числе микромеханического типа. Технический результат - повышение точности навигации подвижных объектов. 2 ил.

Изобретение относится к области приборостроения и может найти применение в астроинерциальных навигационных системах, в которых основная навигационная информация корректируется по сигналам, поступающим с выхода астровизирующего устройства. Технический результат - повышение надежности. Для этого блок формирования астропоправок подключен к блоку отбраковки ложных астропоправок, состоящему из последовательно соединенных буфера выходных сигналов блока формирования астропоправок, двух счетчиков, обеспечивающих выборку сигналов из буфера, разностной системы и системы сравнения, формирующую порог, по которому производится отбраковка сбойных сигналов, выход которого подключается к входу блока формирования осредненного значения астропоправок. При этом блок формирования осредненного значения астропоправок выполнен с возможностью сравнения, обеспечивающего отбраковку сбойных астропоправок по порогу, сформированному в блоке отбраковки ложных астропоправок. 4 ил.

Изобретение относится к области приборостроения и может найти применение в высокоточных астроинерциальных системах пилотируемых авиационно-космических объектов. Технический результат - повышение точности. Для этого осуществляют отбраковку дефектных сигналов. При этом формируют пары сигналов, составляющие максимальное значение полученной абсолютной величины разности, и исключают ее из последующего рассмотрения. Повторяют отбраковку оставшихся сигналов вплоть до того, как не исключенными из рассмотрения останется один сигнал, в случае нечетного начального числа обрабатываемых сигналов, либо два сигнала, в случае четного начального числа обрабатываемых сигналов. Формируется константа, равная значению оставшегося сигнала, либо среднему арифметическому двух оставшихся в рассмотрении сигналов, а в качестве измерения формируется осредненное значение как сумма сигналов, абсолютная величина разности которых и сформированной в процессе отбраковки константы не превышает заданного порога, величина которого определяется точностными характеристиками астровизирующего устройства и делением полученной суммы на число сигналов, удовлетворяющих этому условию. 2 ил.

Способ определения углового положения подвижного объекта относительно центра масс, т.е определение пространственной ориентации при угловом движении, преимущественно летательных аппаратов (ЛА), относительно какой-либо базовой системы координат, путем аналитического ее вычисления на основе измерений каких-либо отдельных параметров ориентации (углов, угловых скоростей и т.д.). Способ включает определение текущей угловой ориентации системы координат OX1Y1Z1 относительно геоцентрической базовой системы координат OXYZ, задание требуемой ориентации системы координат OX2Y2Z2 относительно геоцентрической базовой системы координат OXYZ, при этом системы координат OX1Y1Z1 и OX2Y2Z2 имеют начало координат в центре масс объекта и связаны с ним. Текущие значения углов ориентации связанной системы координат относительно базовой определяются с помощью бесплатформенной инерциальной навигационной системы (БИНС), при этом в геоцентрической базовой системе координат направление оси OZ принимают совпадающим с направлением вектора вращения Земли, а ось ОХ направлена в точку пересечения гринвичского меридиана с экватором. Определяют углы относительной ориентации ςx, ςy, ςz между соответствующими осями связанной системы текущей угловой ориентации и требуемой в геоцентрической базовой системе координат по определенным зависимостям и по результатам вычислений судят об угловом положении подвижного объекта. Технический результат - расширение области применения, повышение достоверности и точности определения углового положения подвижного объекта. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для морских, воздушных и наземных объектов. Технический результат - повышение точности и обеспечение непрерывности коррекции углов курса, тангажа и крена подвижного объекта, в частности ЛА в условиях маневрирования в полете. Указанный результат достигается за счет того, что согласно данному способу, при котором коррекция углов крена и тангажа подвижного объекта осуществляется путем обработки сигналов ДЛУ и ДУС, использования адаптивной обработки посредством фильтра Калмана и измерения магнитного курса магнитометрическим датчиком, дополнительно определяют вертикальную и горизонтальную проекции абсолютного значения магнитного поля Земли на плоскости магнитного меридиана с учетом угла магнитного наклонения по известным координатам местоположения, определяют разность измеренных значений проекций магнитного поля Земли трехкомпонентным магнитометрическим датчиком и проекций составляющих магнитного поля Земли, определенных по текущим координатам подвижного объекта при помощи матрицы направляющих косинусов на связанную ось. Минимизируя полученную разность путем использования фильтра Калмана, получают скорректированные текущие значения магнитного курса, углов тангажа и крена объекта. 1 з.п. ф-лы.

Изобретение относится к измерительной технике и может быть использовано для морских, воздушных и наземных объектов. Технический результат - повышение точности способа коррекции бесплатформенной инерциальной навигационной системы (БИНС) по углам крена и тангажа, в частности, в условиях маневрирования летательного аппарата (ЛА). Способ включает в себя комплексирование сигналов, соответствующих угловой скорости и земной скорости объекта, с сигналами, соответствующими линейным ускорениям и преобразованными с учетом параметров полета объекта, и адаптивную оценку крена и тангажа посредством фильтра Калмана, в котором коэффициент усиления изменяется в зависимости от текущих значений модулей перегрузки и линейной скорости, а также угловых скоростей. Дополнительно используют сигнал, соответствующий продольной скорости объекта, полученный от системы воздушных сигналов (СВС) в виде функции от динамического давления, и сигнал, соответствующий продольному ускорению, полученный путем дифференцирования с последующим сглаживанием сигнала скорости от СВС. Кроме того, производят оптимизацию коэффициентов фильтра Калмана, для чего формируют девять обучающих последовательностей, назначают шесть коэффициентов фильтра, подлежащих настройке, и критерий качества в виде взвешенной среднеквадратической ошибки (СКО) ориентации по крену и тангажу, усредненной по времени и по множеству всех девяти обучающих последовательностей. Оптимизацию коэффициентов алгоритма осуществляют в три этапа. Первый этап заключается в численной минимизации критерия качества и определении коэффициентов для полетов в спокойной атмосфере. Второй этап заключается в численной минимизации критерия качества и определении коэффициентов для полетов в условиях турбулентности. Третий этап определяет процедуру, удовлетворяющую с достаточной точностью полетам как в спокойной атмосфере, так и в турбулентности, путем линейной интерполяции коэффициентов фильтра Калмана по результатам первого и второго этапов. Изобретение позволяет использовать датчики ДУС и ДЛУ средней и низкой точности, в том числе микромеханического типа, так как из-за непрерывной коррекции ошибки не накапливаются. Устройство не требует начальной выставки и обладает свойством самовыставки в течение нескольких секунд и может быть использовано на всех типах ЛА. 3 ил., 1 табл.
Наверх