Способ извлечения цинка из техногенных концентратов с высоким содержанием сульфидов

Изобретение относится к химической технологии неорганических веществ и материалов, в частности к способу извлечения цинка из техногенных концентратов с высоким содержанием сульфидов. Способ включает выщелачивание концентрата, электролиз полученного раствора и последующую регенерацию электролизного раствора. Перед выщелачиванием проводят активационно-окислительную реагентную обработку концентрата путем введения стехиометрического количества персульфата щелочного металла или аммония и воздействия 40%-ной перекисью водорода в количестве 1-3% от массы персульфата. Выщелачивание осуществляют серной кислотой или отработанным электролизным раствором при соотношении твердое: жидкость от 1:3 до 1:10. Техническим результатом является расширение области применения способа, его упрощение и удешевление. 1 табл.

 

Изобретение относится к химической технологии неорганических веществ и материалов.

Известны способы выделения цинка из руд и концентратов, основанные на предварительном окислительном обжиге рудного материала с последующим переводом цинка в раствор посредством реагентного (кислотного, или щелочного) воздействия и выделения цинка на электоролизере [1], или выделения цинка из обогащенных концентратов (концентрация цинка ≥20 мас.%) посредством восстановительного обжига («Вельц процесс») [2].

Однако их область применения ограничена составами природных руд и они не могут быть применены к техногенным концентратам с высоким содержанием сульфидной фазы.

Наиболее близким к предлагаемому изобретению является способ извлечения цинка, основанный на выщелачивании цинкового минерала раствором, содержащим галогенидное соединение из двух или более разных галогенидов, электролиза полученного раствора для получения металлического цинка и регенерирования галогенидного соединения и возвращения электролизованного раствора, содержащего галогенидное соединение, на стадию выщелачивания [3].

Однако область применения его ограничена лишь для цинковых руд и способ не может быть применен к цинковым концентратам техногенного происхождения, содержащим значительное количество сульфидной фазы.

Новая техническая задача - создание способа извлечения цинка из техногенных концентратов с высоким содержанием сульфидной фазы и повышение универсальности и простоты осуществления.

Для решения поставленной задачи в способе извлечения цинка из техногенных концентратов с высоким содержанием сульфидов, включающем выщелачивание сырья, электролиз полученного раствора и последующую регенерацию электролизного раствора, дополнительно проводят предварительную активационно-окислительную реагентную обработку, для чего вводят в концентрат стехиометрическое количество персульфата щелочного металла или аммония, после чего проводят активацию 40% перекисью водорода в количестве 1-3% от массы персульфата, и, далее, кислотное извлечение цинка осуществляют выщелачиванием серной кислотой, либо отработанным электролизным раствором при соотношении твердое : жидкость от 1:3 до 1:10.

Способ осуществляют следующим образом.

В рабочую ячейку - аппарат агитаторного типа помещают определенное количество исходного концентрата, содержащего цинк, и стехиометрическое для окисления сульфидной серы количество персульфата щелочного металла R2S2O8 (где R=Li, Na, K, Rb, Cs) или аммония, воздействуют перикисью водорода H2O2 в количестве 1-3 мас.% от массы персульфата для активации процесса окисления сульфидной серы и проводят перемешивание до начала уменьшения возросшей температуры смеси, с последующим добавлением серной кислоты или отработанного электролизного раствора при соотношении твердое: жидкость от 1:3 до 1:10, после чего полученную пульпу подвергают перемешиванию в течение 30 минут и фильтрации с последующим электролизным выделением металлического цинка из отфильтрованного раствора.

Результаты экспериментов, проведенных для отработки технических параметров способа, представлены в таблице 1.

Пример 1.

В рабочую ячейку - аппарат агитаторного типа помещают 231 г исходного концентрата, содержащего цинк (шлам: влажность 35%, содержание цинка 10%) и 17,5 г K2S2O8 для окисления сульфидной серы, время 15 минут, далее, воздействуют 40% Н2О2 в количестве 5 мл для активации процесса окисления сульфидной серы и проводят перемешивание до начала уменьшения возросшей температуры смеси с последующим добавлением 25 мл 92% серной кислоты, после чего полученную пульпу подвергают перемешиванию в течение 30 минут и фильтрации с последующим электролизным выделением металлического цинка из отфильтрованного раствора. Состав фильтрата: 24,5 г Zn, извлечение составило 95,6% от общего количества.

Пример 2.

В рабочую ячейку - аппарат агитаторного типа помещают 208 г исходного концентрата, содержащего цинк (шлам: влажность 28%, содержание цинка 18,3%) и 17,5 г K2S2O8 для окисления сульфидной серы, время 20 минут, воздействуют 40% Н2О2 в количестве 10 мл для активации процесса окисления сульфидной серы и проводят перемешивание до начала уменьшения возросшей температуры смеси с последующим добавлением 25 мл 92% серной кислоты, после чего полученную пульпу подвергают перемешиванию в течение 30 минут и фильтрации с последующим электролизным выделением металлического цинка из отфильтрованного раствора. Состав фильтрата: 37,3 г Zn, извлечение составило 92%.

Пример 3

В рабочую ячейку - аппарат агитаторного типа помещают 208 г исходного концентрата, содержащего цинк (шлам: влажность 28%, содержание цинка 18,3) и 17,5 г K2S2O8 для окисления сульфидной серы, время 15 минут воздействуют 40% Н2О2 в количестве 5 мл для активации процесса окисления сульфидной серы и проводят перемешивание до начала уменьшения возросшей температуры смеси с последующим добавлением 25 мл 92% серной кислоты, после чего полученную пульпу подвергают перемешиванию в течение 30 минут и фильтрации с последующим электролизным выделением металлического цинка из отфильтрованного раствора. Состав фильтрата: 38,1 г Zn, извлечение составило 94%.

Пример 4

В рабочую ячейку - аппарат агитаторного типа помещают 208 г исходного концентрата, содержащего цинк (шлам: влажность 28%, содержание цинка 18,3%) и 17,5 г K2S2O8 для окисления сульфидной серы, время 20 минут, воздействуют 40% Н2О2 в количестве 10 мл для активации процесса окисления сульфидной серы и проводят перемешивание до начала уменьшения возросшей температуры смеси с последующим добавлением 25 мл 92% серной кислоты, после чего полученную пульпу подвергают перемешиванию в течение 30 минут и фильтрации с последующим электролизным выделением металлического цинка из отфильтрованного раствора. Состав фильтрата: 37,8 г Zn, извлечение составило 93,3%.

Пример 5

В рабочую ячейку - аппарат агитаторного типа помещают 208 г исходного концентрата, содержащего цинк (шлам: влажность 28%, содержание цинка 18,3%) и 17,5 г K2S2O8 для окисления сульфидной серы, время 20 минут, воздействуют 40% Н2O2 в количестве 10 мл для активации процесса окисления сульфидной серы и проводят перемешивание до начала уменьшения возросшей температуры смеси с последующим добавлением 300 мл электролизного раствора с концентрацией серной кислоты 150 г/л, после чего полученную пульпу подвергают перемешиванию в течение 30 минут и фильтрации с последующим электролизным выделением металлического цинка из отфильтрованного раствора. Состав фильтрата: 35,39 г Zn, извлечение составило 93%.

Предлагаемый способ основан на следующем. Процесс извлечения цинка из шлама осуществляют следующим образом: исходный шлам подвергается активационно-окислительной реагентной обработке, кислотному извлечению цинка в раствор, фильтрации и последующему извлечению металлического цинка в процессе электролиза.

При этом на стадии активационно-окислительной обработки температура обрабатываемой смеси повышается до 60-90°С за счет теплоты реакции окисления сульфидной серы, что позволяет эффективно избавиться от присутствия в смеси сульфид -ионов и перевести цинк в растворимое - несульфидное состояние. Дальнейшая обработка смеси производится серной кислотой или элетролизованным раствором без перегрузки смеси в другой аппарат, при этом количество выделяемого сероводорода не превышает уровня допустимой ПДК. Обработка кислотой продолжается в течение 30-40 минут независимо от объема смеси для наиболее полного перевода цинка в раствор, после чего полученная смесь подвергается фильтрации. Твердый остаток промывается небольшими порциями электролизного раствора и водой для доизвлечения цинка, после чего отправляется на нейтрализацию и захоронение, а осветленный раствор на стадию электролизного извлечения цинка.

Таким образом, предлагаемый способ обеспечивает извлечение цинка из техногенных концентратов с высоким содержанием сульфидов.

Источники информации

1. А.С.Медведев. Выщелачивание и способы его интенсификации. - М.: Металлургия, 2005, 240 с.

2. В.Я.Зайцев, Е.В.Маргулис. Металлургия свинца и цинка. - М., Металлургия, 1985, 263 с.

3. Д.Мойз, Ф.Хоуллис. Способ извлечения цинка. Патент РФ №2298585 от 12.09.2002 г.

Таблица 1
Шлам, состав, массаРеагенты, время реакцииФильтратИзвлечение
Влажность WZnМасса шламаКол-во ZnK2S2O8 СухойН2O2 40%Н2SO4

p

92%
Н2ОЭлектролит после электролизаОбъемСоставZn%
VH2SO4Zn
%%гггминмлминмлминмлминVмлZn, г/лмлг/дм3г/дм3г
3351023123,117,515552530100510025,330020,851,524,595,6
42818,320838,0617,5201052530100510024,531020,851,537,392
52818,320838,0617,515552530100510024,530051,566,238,194
62818,320838,0617,5201052530100510024,530553,949,937,893,3
72818,320838,617,520105Эл.р-р30030100510024,530552,451,435,3993

Способ извлечения цинка из техногенных концентратов с высоким содержанием сульфидов, включающий выщелачивание концентрата, электролиз полученного раствора и последующую регенерацию электролизного раствора, отличающийся тем, что перед выщелачиванием проводят активационно-окислительную реагентную обработку концентрата путем введения стехиометрического количества персульфата щелочного металла или аммония и воздействия 40%-ной перекисью водорода в количестве 1-3% от массы персульфата, и выщелачивание осуществляют серной кислотой или отработанным электролизным раствором при соотношении твердое: жидкость от 1:3 до 1:10.



 

Похожие патенты:

Изобретение относится к ячейке-элементу пакетной батареи ячеек для электрохимического выделения металла из растворов ионов металла. .
Изобретение относится к цветной металлургии и может быть использовано при электролизе цинка из сульфатных цинковых растворов на заводах, работающих с автоматизированной сдиркой катодного металла.

Изобретение относится к металлургии и может быть использовано для извлечения веществ электроэкстракцией, а также для очистки промышленных и бытовых стоков. .

Изобретение относится к способам электроосаждения цинка, в которых используются добавки, ингибирующие выделение водорода и/или повышающие выход по току цинка. .

Изобретение относится к цветной металлургии, а именно, к устройствам для электролитического получения цветных металлов в электролизерах с плоскими или пластинообразными электродами, в частности, к устройствам для автоматического контроля массы осаждаемого цинка на катодах электролизной ванны при управлении процессом электролиза.

Изобретение относится к цветной металлургии, к получению цветных металлов, в частности, цинка, методом электролиза водных растворов. .

Изобретение относится к области цветной металлургии, в частности к способам получения кадмия. .

Изобретение относится к цветной металлургии, к получению цветных металлов, в частности цинка, методом электролиза водных растворов. .
Изобретение относится к металлургии, а именно к способам извлечения никеля из окисленных никелевых руд. .

Изобретение относится к гидрометаллургии цветных и благородных металлов, преимущественно к извлечению меди и золота из пиритных огарков, являющихся отходами сернокислотного производства, и может быть использовано при кучном, кюветном и перколяционном выщелачивании.

Изобретение относится к комплексной переработке медного концентрата с селективным извлечением цветных и благородных металлов. .
Изобретение относится к гидрометаллургии и обогащению руд, извлечению цветных, редких и благородных металлов из сульфидного минерального сырья, к переработке руд, продуктов обогащения и отходов горно-обогатительных и металлургических производств, в том числе концентратов, промпродуктов, хвостов, шлаков, шламов и др.
Изобретение относится к гидрометаллургии цветных металлов, в частности меди, к переработке бедных руд, шламов, отвалов, в том числе содержащих сульфиды металлов, и может быть использовано для получения металлов кучным выщелачиванием минерального сырья при отрицательной температуре.

Изобретение относится к области гидрометаллургии цветных металлов и может быть использовано при переработке концентратов, промпродуктов и твердых отходов, содержащих цветные металлы.
Изобретение относится к металлургии цветных металлов, в частности к способам комплексной переработки сульфидных концентратов и промпродуктов, и может быть использовано для извлечения цветных и благородных металлов.
Изобретение относится к гидрометаллургии, а именно к переработке руд, продуктов и отходов горно-обогатительных и металлургических производств, содержащих сульфиды металлов, и может быть использовано при извлечении меди из смешанных и окисленных руд чановым выщелачиванием.
Изобретение относится к металлургии меди, также металлургии других цветных металлов, а именно к способам переработки сульфидно-окисленных медных руд, а также промпродуктов, хвостов и шлаков, содержащих окисленные и сульфидные минералы цветных металлов.
Изобретение относится к металлургии меди, также металлургии других цветных металлов, а именно к способам переработки сульфидно-окисленных медных руд, а также промпродуктов, хвостов.

Изобретение относится к обогащению полезных ископаемых и может быть использовано для переработки цинксодержащих отходов металлургического и горного производства, в частности цинксодержащих доменных, конверторных, электросталеплавильных пылей и шламов, а также цинк- и железосодержащих оксидных отходов черной и цветной металлургии.
Наверх