Газотурбинный двигатель с регенерацией тепла

Изобретение может использоваться преимущественно для привода электрогенераторов в безредукторных энергетических газотурбинных установках. Газотурбинный двигатель с регенерацией тепла включает в себя газогенератор, содержащий компрессор высокого давления, камеру сгорания и турбину высокого давления, силовую газовую турбину, газовоздушный теплообменник, дополнительный компрессор. Дополнительный компрессор установлен на одном валу с газовой силовой турбиной и с воздушной силовой турбиной. Вход в воздушную силовую турбину через воздушную полость газовоздушного теплообменника связан с выходом из дополнительного компрессора. Газовая полость газовоздушного теплообменника соединена с выходом из газовой силовой турбины. Газогенератор дополнительно снабжен компрессором низкого давления и турбиной низкого давления. Изобретение защищает величину отношения площади проточной части дополнительного компрессора на входе к его площади на выходе и величину отношения площади проточной части дополнительного компрессора на выходе к площади горла первого соплового аппарата воздушной силовой турбины. Изобретение позволяет уменьшить степень повышения давления в дополнительном компрессоре и увеличить расход воздуха через воздушную силовую турбину, повысить мощность, КПД и уменьшить стоимость безредукторной газотурбинной установки вследствие меньшей металлоемкости. 4 ил.

 

Изобретение может использоваться преимущественно для привода электрогенераторов в безредукторных энергетических газотурбинных установках.

Известен газотурбинный двигатель с регенерацией тепла (патент РФ №2192552), содержащий однокаскадный газогенератор, образованный компрессором высокого давления, камерой сгорания и турбиной высокого давления, силовую газовую турбину, газовоздушный теплообменник, дополнительный компрессор, установленный на одном валу с силовой воздушной турбиной, вход в которую через воздушную полость газовоздушного теплообменника связан с выходом из дополнительного компрессора, газовая полость газовоздушного теплообменника соединена с выходом из газовой силовой турбины, при этом: F1:F2=2-5, а F3:F4=0,5-1, где F1 - площадь проточной части дополнительного компрессора на входе, F2 - площадь проточной части дополнительного компрессора на выходе, F3 - площадь горла первого соплового аппарата воздушной силовой турбины, F4 - площадь горла первого соплового аппарата газовой силовой турбины.

Недостатком известной конструкции является неэффективная работа газотурбинного двигателя в составе безредукторной энергетической газотурбинной установки.

Этот недостаток объясняется следующим.

Особенностью работы газотурбинного двигателя (ГТД) в составе безредукторной энергетической газотурбинной установки (ГТУ) является относительно небольшая (3000 об/мин) частота вращения ротора газотурбинного двигателя, соответствующая частоте вращения ротора турбогенератора, что вступает в противоречие с требованием высоких термодинамических параметров работы, обеспечивающих высокий КПД установки.

Соотношение площадей проточной части на входе и выходе дополнительного компрессора (F1:F2=2-5) по сути определяет степень повышения давления воздуха в дополнительном компрессоре и обеспечивает работу ГТД при степени повышения давления в дополнительном компрессоре . При относительно невысоких оборотах (невысоких окружных скоростях на периферии рабочих колес) для получения таких степеней повышения давления в компрессоре понадобиться от 10 до 27 ступеней. Растет металлоемкость, цена и при этом падает КПД дополнительного компрессора.

Чем выше степень повышения давления в дополнительном компрессоре, тем меньше температурный напор (разность температур между газовоздушной смесью за силовой газовой турбиной и воздухом за дополнительным компрессором - ΔТ) в газовоздушном теплообменнике (ГВТ). В этом случае для увеличения эффективности за счет увеличения коэффициента рекуперации необходимо увеличивать размеры ГВТ.

Кроме того, повышение параметров термодинамического цикла работы ГТД - увеличение степени повышения давления в компрессоре газогенератора и увеличение температуры газов перед газовой силовой турбиной (Т4*) приводит к уменьшению температуры газов на выходе из силовой газовой турбины. В этом случае эффективность ГВТ падает. Соответственно уменьшаются суммарная мощность и КПД установки.

Соотношение F3:F4 определяет соотношение расходов воздуха и газа через воздушную и газовую силовые турбины и соответственно через воздушную и газовую полости газовоздушного теплообменника. Анализ влияния этого параметра на КПД и мощность блока в целом показал, что при высоких параметрах термодинамического цикла работы газогенератора при значении соотношения F3:F4≤1 происходит снижение суммарной мощности и суммарного КПД всей установки. Это снижение можно компенсировать увеличением степени повышения давления в дополнительном компрессоре за счет увеличения количества ступеней компрессора. Но при этом растет температура за дополнительным компрессором и падает эффективность газовоздушного теплообменника.

Технический результат, достигаемый изобретением, заключается в уменьшении степени повышения давления в дополнительном компрессоре и увеличении расхода воздуха через воздушную силовую турбину за счет оптимизации соотношения площадей F1:F2 и F3:F4, что обеспечивает повышение мощности, КПД, и меньшую стоимость безредукторной газотурбинной установки вследствие меньшей металлоемкости.

Указанный технический результат достигается тем, что в газотурбинном двигателе с регенерацией тепла, включающем газогенератор, содержащий компрессор высокого давления, камеру сгорания и турбину высокого давления, силовую газовую турбину, газовоздушный теплообменник, дополнительный компрессор, установленный на одном валу с газовой силовой турбиной и с дополнительной воздушной силовой турбиной, вход в которую через воздушную полость газовоздушного теплообменника связан с выходом из дополнительного компрессора, газовая полость газовоздушного теплообменника соединена с выходом из газовой силовой турбины, в соответствии с изобретением газогенератор дополнительно снабжен компрессором низкого давления и турбиной низкого давления, при этом 1,8≤F1:F2<2; 1<F3:F4≤1,2, где F1 - площадь проточной части дополнительного компрессора на входе, F2 - площадь проточной части дополнительного компрессора на выходе, F3 - площадь горла первого соплового аппарата воздушной силовой турбины, F4 - площадь горла первого соплового аппарата газовой силовой турбины.

Заявляемые диапазоны соотношений площадей обеспечивают увеличение расхода воздуха через воздушную силовую турбину и уменьшение степени повышения давления в дополнительном компрессоре, что увеличивает суммарную мощность установки и КПД. Кроме того, уменьшается количество ступеней в компрессоре, а значит и металлоемкость.

Выполнение газогенератора по двухкаскадной схеме, т.е. включение в его состав компрессора и турбины низкого давления, обеспечивает увеличение степени повышения давления в компрессорах газогенератора и повышение температуры газов перед турбиной низкого давления, а следовательно, повышает мощность и КПД. При этом сокращается количество ступеней компрессоров газогенератора, обеспечивается газодинамическая устойчивость и уменьшается количество регулируемых элементов в компрессорах газогенератора.

Кроме того, использование в заявляемой схеме ГТД именно двухкаскадной конструкции газогенератора обеспечивает устойчивую работу ГТД на переходных режимах.

При F1/F2<1,8 - дальнейшее уменьшение степени повышения давления в дополнительном компрессоре не компенсируется увеличением расхода воздуха через дополнительный компрессор и воздушную турбину, в результате чего КПД и мощность установки начинают уменьшаться.

При F1/F2≥2 - увеличивается степень повышения давления в дополнительном компрессоре, что при заданном числе оборотов ротора (3000 об/мин) приводит к увеличению ступеней дополнительного компрессора и воздушной силовой турбины, а следовательно, металлоемкости и цены. Кроме того, уменьшается перепад температур на ГВТ, что приводит к меньшей эффективности работы воздушной силовой турбины и дополнительного компрессора или при прочих равных условиях к увеличению размеров ГВТ.

В случае F3/F4≤1 - уменьшается расход воздуха через воздушно силовую турбину и дополнительный компрессор, в результате падает мощность и КПД безредукторной ГТУ.

При F3/F4>1,2 - увеличивается расход воздуха через воздушную силовую турбину и дополнительный компрессор, что приводит к уменьшению степени повышения давления в дополнительном компрессоре и к уменьшению мощности и КПД безредукторной ГТУ при тех же размерах ГВТ, иначе - к увеличению его размеров.

Предлагаемое изобретение иллюстрируется чертежами: на фиг.1 представлена схема заявляемого ГТД в составе безредукторной ГТУ;

на фиг.2 приведена зависимость относительного увеличения мощности безредукторной ГТУ от соотношения площадей F3:F4;

на фиг.3 приведена зависимость относительного увеличения КПД безредукторной ГТУ от соотношения F3:F4;

на фиг.4 приведена кривая оптимального соотношения площадей F1:F2=f(F3:F4).

ГТД (фиг.1) включает двухкаскадный газогенератор, образованный компрессором высокого давления (КВД) 1, камерой сгорания 2, турбиной высокого давления (ТВД) 3, компрессором низкого давления (КНД) 4 и турбиной низкого давления (ТНД) 5. ГТД содержит также газовую силовую турбину 6, выход по выхлопным газам которой соединен с газовой полостью ГВТ 7. Воздушная полость ГВТ 7 на входе соединена с выходом дополнительного компрессора 8, который установлен на одном валу с газовой силовой турбиной 6, воздушной силовой турбиной 9 и потребителем мощности - электрогенератором 10. Вход в воздушную силовую турбину 9 через воздушную полость ГВТ 7 связан с выходом дополнительного компрессора 8.

Дополнительный компрессор 8 выполнен с площадями проточной части F1 на входе и F2 - на выходе. Силовая воздушная 9 и силовая газовая 6 турбины выполнены с площадями горла F3 и F4 соответственно. Причем 1,8≤F1:F2<2 и 1<F3:F4≤1,2.

ГТД работает следующим образом.

Воздух, поступающий на всас КНД 4 газогенератора, сжимают в КНД 4 и КВД 1 и подают на вход в камеру сгорания 2. Образовавшийся в камере сгорания 2 высокотемпературный газ, расширяясь в ТВД 3 и ТНД 5, совершает работу по приводу КВД 1 и КНД 4, дальнейшее расширение газа за ТНД 5 происходит в газовой силовой турбине 6, где вырабатывается полезная мощность, для привода электрогенератора 10.

Газ с выхода газовой силовой турбины 6 поступает в газовую полость ГВТ 7, где отдает свое тепло воздуху, который нагнетается в воздушную полость ГВТ 7 с помощью дополнительного компрессора 8. Воздух, подогретый в ГВТ 7, расширяется в воздушной силовой турбине 9 и вырабатывает дополнительную полезную мощность по приводу электрогенератора 10.

Для подтверждения заявляемых соотношений площадей были проведены термодинамические расчеты ГТД со следующими параметрами цикла:

- суммарная степень повышения давления в компрессорах газогенератора

- температура газа перед газовой силовой турбиной Т4*≈1580 К, результаты которых явились подтверждением представленных графиков.

Из фиг.2 и фиг.3 следует: максимальной мощности и максимального КПД при заданных высоких параметрах цикла установка достигает при соотношении площадей сопловых аппаратов газовой и воздушной силовых турбин F3:F4>1.

На фиг.4 приведена кривая оптимального соотношения площадей F1:F2=f (F3:F4), подтверждающая, что на участке F3:F4>1 соотношение F1:F2<2.

Кроме того, расчеты показывают - степень повышения давления дополнительного компрессора при соотношении F1:F2<2 становится меньше 4. Таким образом, уменьшается количество ступеней дополнительного компрессора, а следовательно, и его металлоемкость.

Газотурбинный двигатель с регенерацией тепла, включающий газогенератор, содержащий компрессор высокого давления, камеру сгорания и турбину высокого давления, силовую газовую турбину, газовоздушный теплообменник, дополнительный компрессор, установленный на одном валу с газовой силовой турбиной и с воздушной силовой турбиной, вход в которую через воздушную полость газовоздушного теплообменника связан с выходом из дополнительного компрессора, газовая полость газовоздушного теплообменника соединена с выходом из газовой силовой турбины, отличающийся тем, что газогенератор дополнительно снабжен компрессором низкого давления и турбиной низкого давления, при этом 1,8≤F1:F2<2; 1<F3:F4≤1,2, где

F1 - площадь проточной части дополнительного компрессора на входе,

F2 - площадь проточной части дополнительного компрессора на выходе,

F3 - площадь горла первого соплового аппарата воздушной силовой турбины,

F4 - площадь горла первого соплового аппарата газовой силовой турбины.



 

Похожие патенты:

Изобретение относится к двигателестроению, в том числе к авиационным и стационарным двигателям ГТД, работающим на сжиженном природном газе - СПГ. .

Изобретение относится к двигателестроению, в том числе к авиационным и стационарным двигателям ГТД, работающим на сжиженном природном газе - СПГ. .

Изобретение относится к двигателестроению, в том числе к авиационным и стационарным двигателям ГТД, работающим на сжиженном природном газе - СПГ. .

Изобретение относится к железнодорожному транспорту, конкретно к силовым установкам локомотива, выполненным на базе газотурбинного двигателя (турбопоезда или газотурбовоза).

Изобретение относится к теплотехнике и может найти применение в газотурбинных установках газоперекачивающих агрегатов. .

Изобретение относится к теплоэнергетике, в частности к энергетическим установкам, способным производить полезную работу. .

Изобретение относится к машиностроению и может быть использовано при создании газоперекачивающих агрегатов (ГПА) и газотурбинных электростанций (ГТЭС), имеющих противообледенительную систему в воздухоочистительном устройстве.

Изобретение относится к энергомашиностроению и может быть использовано в качестве двигателя транспортного средства, а также в качестве силовой установки на теплоэлектростанциях.

Изобретение относится к теплоэнергетическому машиностроению и может быть использовано на магистральных газопроводах для транспортировки газа и производства электрической энергии на базе установок бинарного цикла с комбинированным применением газотурбинных и паротурбинных установок

Изобретение относится к воздухоочистительным устройствам и может использоваться в составе газоперекачивающего агрегата с газотурбинной установкой (ГТУ)

Изобретение относится к воздухоочистительным устройствам и может использоваться в составе газоперекачивающего агрегата с газотурбинной установкой (ГТУ)

Когенерационная газотурбинная энергетическая установка содержит компрессоры низкого и высокого давления, камеру сгорания, газовую турбину высокого давления и газовую турбину низкого давления, имеющие между собой газовую связь, теплофикационное устройство и основной электрический генератор, подсоединенный к газовой турбине высокого давления и используемый в качестве полезной нагрузки. Выход компрессора низкого давления присоединен к входу компрессора высокого давления. Теплофикационное устройство установлено между газовыми турбинами, снабжено внутренним горячим каналом, в котором размещен движущийся теплоноситель, представляющий собой частично отработавшие в газовой турбине высокого давления продукты сгорания, а также холодным каналом с помещенным внутри него другим движущимся теплоносителем, отводящим получаемую в результате теплообмена между горячим и холодным каналами внутри теплофикационного устройства тепловую энергию для ее использования вне газотурбинной энергетической установки. В когенерационной газотурбинной энергетической установке дополнительно установлено теплообменное устройство, содержащее взаимодействующие между собой посредством теплообмена горячий и холодный каналы. Вход горячего канала теплообменного устройства подсоединен к выходу из газовой турбины высокого давления, а выход горячего канала теплообменного устройства присоединен к входу горячего канала теплофикационного устройства. В качестве движущегося теплоносителя горячего канала теплообменного устройства использованы частично отработавшие продукты сгорания, поступающие из газовой турбины высокого давления. Вход холодного канала теплообменного устройства подсоединен к выходу из компрессора высокого давления, а выход холодного канала теплообменного устройства присоединен к входу камеры сгорания. В качестве движущегося теплоносителя холодного канала теплообменного устройства использована содержащая окислитель газообразная смесь, поступающая из компрессора высокого давления. Теплофикационное устройство выполнено с регулируемым теплосъемом. К газовой турбине низкого давления подсоединен дополнительный электрический генератор, используемый в качестве полезной нагрузки. Изобретение направлено на обеспечение регулирования режима когенерации, то есть количества вырабатываемой тепловой и электрической энергии, и на повышение коэффициента полезного действия. 5 з.п. ф-лы, 3 ил.

Изобретение относится к энергетическому машиностроению и может быть использовано в конструкциях турбокомпрессорных установок с замкнутым термодинамическим циклом Брайтона. Турбокомпрессорная энергетическая установка включает турбокомпрессор, нагреватель рабочего тела и теплообменник-рекуператор, объединенные в замкнутый контур. На выходе проточного тракта рабочего колеса турбины установлен спрямляющий аппарат в виде кольцевой лопаточной решетки, образованной пустотелыми лопатками с проточными каналами, сообщенными с концентрически выполненными наружным и внутренним коллекторами. Наружный коллектор разделен на два полуколлектора, один из которых сообщен патрубком с выходом компрессора, а другой - со входом в теплопринимающий тракт теплообменника-рекуператора. Изобретение решает задачу повышения коэффициента полезного действия энергетического цикла установки и снижения ее массы. 3 ил.

Конструкция турбомашины с теплообменником, интегрированным в выпускной газовоздушный тракт (10) потока горячих газов (1) турбомашины, отличающаяся тем, что элементы теплообмена (60, 60а-60i; 9), установленные в одном из элементов (11, 14, 14а, 14b, 15, 16, 16а, 16b, 18, 18а, 18с) выпускного газовоздушного тракта (10), выполнены с возможностью направлять часть потока горячих газов (1), проходящую через элементы теплообмена, с последующим использованием остаточной тепловой энергии указанной части потока горячих газов (1) для увеличения мощности на валу (30, 31) турбомашины (20, 20а, 20b), оставляя большую часть потока горячих газов (1) невозмущенной. Позволяет добиться оптимального общего компромисса между техническими характеристиками, массой и эксплуатационными расходами. 8 з.п. ф-лы, 9 ил.

Изобретение относится к энергетике. Система теплообмена построена на основе регенерации тепла отработавших газов посредством вращающегося роторного теплообменника каркасного типа, установленного внутри корпуса двигателя между патрубком подвода от компрессора сжатого воздуха и патрубком отвода отработавших газов и соответствующими внутренними холодной и горячей полостями и соответственно для подвода сжатого воздуха в камеру сгорания и отвода отработавшего газа от рабочей турбины. Теплообменник в ней выполнен с возможностью комплексного охлаждения стенок каркаса и горячей щеки, причем для охлаждения последней в ее теле имеются поперечные лабиринтные каналы, которые продуваются сжатым воздухом, подаваемым от компрессора в эти каналы в обход теплообменной матрицы регенератора. Таким охлаждением каркаса достигается минимизация термического деформирования (коробления) каркаса, а выравнивание температурного градиента обеспечивается тем, что поступающие в центральную полость потоки воздуха, охлаждающего горячую щеку каркаса, собираются в единый поток, направляемый в рекуперативный теплообменник, неподвижно установленный на стороне отходящих от рабочей турбины горячих газов так, что его выход, размещенный в корпусной стойке двигателя, обращен в полость, где эта часть воздуха смешивается с основным потоком воздуха, прошедшим теплообменную матрицу регенератора. Изобретение позволяет повысить эффективность сжигания топлива и обеспечить выравнивание температурного градиента каркаса регенератора. 3 з.п. ф-лы, 3 ил.
Наверх