Способ получения хлорированных полимеров и сополимеров олефиновых углеводородов

Изобретение относится к технологии получения хлорированных полимеров и сополимеров олефиновых углеводородов. Хлорирование полимеров и сополимеров олефиновых углеводородов проводят в среде гексахлорацетона в присутствии инициатора. Осаждение проводят путем добавления алифатического углеводорода к реакционной смеси. После отделения продукта из реакционной смеси декантацией или фильтрованием его промывают осадителем, затем при интенсивном перемешивании при температуре 20-100°С обрабатывают водой. Такая обработка позволяет удалить из продукта остаточные количества гексахлорацетона, исключить слипаемость между собой частиц продукта и, тем самым, получить его в удобной для применения форме (порошка или мелких гранул). Эти продукты нашли широкое применение при изготовлении химически и атмосферостойких лаков, эмалей, клеев, пленок, электроизоляционных материалов, в качестве модификатора ударопрочности для композиций на основе ПВХ, особо широко используются в резинотехнической и шинной промышленности. 2 з.п. ф-лы, 1 табл.

 

Изобретение относится к химической технологии, а более конкретно к технологии получения хлорированных полимеров и сополимеров олефиновых углеводородов. Эти продукты нашли широкое применение при изготовлении химически и атмосферостойких лаков, эмалей, клеев, пленок, электроизоляционных материалов, в качестве модификатора ударопрочности для композиций на основе ПВХ, особо широко используются в резинотехнической и шинной промышленности.

Получают хлорированные полимеры и сополимеры олефиновых углеводородов путем хлорирования исходных (со)полимеров газообразным хлором.

В промышленности процесс хлорирования проводят, в основном, двумя способами:

- хлорированием (со)полимера газообразным хлором в хлорорганическом растворителе;

- хлорированием суспензии (со)полимера в среде соляной кислоты газообразным хлором обычно с добавкой хлорорганического растворителя, вызывающего набухание (со)полимера (четыреххлористого углерода, хлороформа или их смеси).

Во всех способах хлорирование обычно проводят при повышенной температуре в присутствии катализатора или радикального инициатора или облучении.

Предлагаемое изобретение относится к технологии хлорирования полимеров и сополимеров олефиновых углеводородов в среде хлорорганического растворителя. Такие способы широко описаны в технической литературе и патентах [А.А.Донцов, Г.Я.Лозовик, С.П.Новицкая. Хлорированные полимеры, М.: Химия, 1979, с.13-14; патенты РФ: № 2046805 МПК C08F 8/22, 214/02; №2059652, МПК C08F 114/06, 8/22; № 2244722, МПК C08F 8/22, 8/00].

Все эти способы базируются на том, что процесс хлорирования проводят газообразным хлором в среде хлорорганического растворителя, такого как дихлорэтан, трихлорэтан, тетрахлорэтан, хлорбензол и др., при температуре 90-130°С, в присутствии катализатора или радикального инициатора. В качестве катализатора обычно используют хлориды металлов переменной валентности, а в качестве инициатора азо-бис-нитрилы (азо-бис-изобутиронитрил), органические перекиси или УФ- или γ-излучение.

Выделение целевого продукта, полученного таким способом, обычно проводят путем его осаждения метанолом (этанолом) или распылением реакционной смеси в кипящей воде и одновременной отгонкой растворителя с водяным паром, последующим фильтрованием продукта, промывкой и сушкой.

Недостатком описанных способов является то, что в процессе синтеза хлорированию подвергается не только (со)полимер, но и растворитель. Это приводит к неэффективному расходу растворителя и хлора, значительно усложняет регенерацию растворителя и порождает экологические проблемы, связанные с утилизацией продуктов хлорирования растворителя.

Кроме того, при выделении целевого продукта осаждением органическим растворителем используют высокотоксичный метанол или очень дорогой этанол. При осаждении продукта распылением реакционной массы в кипящую воду образуется большое количество сточных вод, содержащих хлорорганические соединения с низкой биоразлагаемостью.

Целью предлагаемого способа являются:

- упрощение технологии выделения целевого продукта и регенерации растворителя;

- снижение расхода растворителя и хлора за счет исключения образования хлорорганических соединений, образующихся в результате хлорирования растворителя;

- исключение стадии утилизации хлорорганических отходов, полученных в результате хлорирования растворителя;

- замена высокотоксичного метанола на менее токсичный осадитель;

- исключение образования сточных вод, содержащих хлорорганику.

Поставленная цель достигается тем, что хлорирование полимеров и сополимеров олефиновых углеводородов проводят в среде гексахлорацетона при повышенной температуре в присутствии инициатора (до 0,1 мас.% от массы загруженного полимера), например третбутилпербензоата, кумилпероксида, дитретбутилпероксида и др. Инициатор может вноситься как однократно, так и дробно.

Выделение целевого продукта осуществляют путем обработки реакционной смеси органическим осадителем или путем ее обработки органическим разбавителем с последующим или одновременным добавлением органического осадителя. После осаждения целевой продукт отделяют декантацией или фильтрованием, промывают органическим осадителем и обрабатывают при температуре 20-100°С водой, предпочтительно содержащей гидроксид, гидрокарбонат или карбонат щелочного металла и, возможно, но не обязательно, поверхностно-активное вещество (например, неионогенное ПАВ), затем продукт сушат.

Гексахлорацетон обладает высокой растворяющей способностью относительно (со)полимеров олефиновых углеводородов и продуктов их хлорирования, при этом в процессе синтеза он не подвергается хлорированию, что исключает образование побочных продуктов.

В качестве разбавителя используют растворитель, способный растворять хлорированные полимеры и сополимеры олефиновых углеводородов, преимущественно выбранный из группы, включающей: алифатические и ароматические хлоруглеводороды, алкилацетаты, ароматические или циклоалифатические углеводороды или их различные смеси.

В качестве осадителя используют алифатический углеводород, содержащий в своей структуре 3-12 атомов углерода, или кетон, содержащий в своей структуре 3-8 атомов углерода, или нитрил, или их различные смеси.

Осаждение проводят как добавлением алифатического углеводорода к реакционной смеси или реакционной смеси, смешанной с разбавителем, так и в обратном порядке. Возможно осаждение целевого продукта смесью разбавителя и осадителя.

После отделения продукта из реакционной смеси декантацией или фильтрованием его промывают осадителем, затем при интенсивном перемешивании и при температуре 20-100°С обрабатывают водой, предпочтительно содержащей до 5 мас.% гидроксида, гидрокарбоната или карбоната щелочного металла и, возможно, но не обязательно, до 0,5 мас.% поверхностно-активного вещества (например, оксиэтилированного алкилфенола ОП-10, неонола АФ 9-12 и др.). Такая обработка позволяет удалить из продукта остаточные количества гексахлорацетона, исключить слипаемость между собой частиц продукта и, тем самым, получить его в удобной для применения форме (порошка или мелких гранул).

Сушат продукт при температуре 40-100°С с использованием известного технологического оборудования предпочтительно во взвешенном слое.

Регенерация растворителей заключается в их разделении ректификацией или перегонкой, при этом не требуется их идеально полное разделение. Регенерированные растворители, которые используются в качестве разбавителей, могут содержать примеси растворителей, используемых в качестве осадителей, и наоборот. Кроме того, и те и другие могут содержать примесь гексахлорацетона. Единственным требованием является то, что гексахлорацетон, используемый для хлорирования, должен быть освобожден от других растворителей полностью.

Ниже приведены примеры, демонстрирующие сущность предлагаемого способа хлорирования (со)полимеров олефиновых углеводородов, которые никоим образом не ограничивают объем притязаний описания и формулы изобретения.

Пример. Хлорирование полимеров и сополимеров олефиновых углеводородов (типовая методика).

А) Стадия синтеза

В реактор, снабженный мешалкой, термометром, обратным холодильником и барботером для подачи хлора или азота, загружают 250 мл гексахлорацетона и 5-15 г полимера или сополимера олефинового углеводорода. Полученную суспензию нагревают до 100-120°С и перемешивают до полного растворения полимера. Затем в реактор загружают инициатор (0,05% от массы загруженного полимера), продувают азотом и подают хлор. Процесс хлорирования проводят при температуре 90-140°С, по достижении заданного привеса реакционной массы подачу хлора прекращают и из реакционной массы азотом отдувают растворенный хлор и хлористый водород.

Б) Стадия выделения целевого продукта

В реактор, снабженный мешалкой, обратным холодильником и капельной воронкой, загружают осадитель или смесь осадителя и разбавителя и при заданной температуре из капельной воронки при перемешивании дозируют полученную на стадии синтеза реакционную массу. Реакционная масса со стадии синтеза предварительно может быть смешана с разбавителем. Полученную суспензию охлаждают, осадок целевого продукта отделяют декантацией или фильтрованием. Затем осадок при температуре 80°С суспендируют в воде, содержащей 0,01 мас.% НПАВ (ОП-10), или при 20°С в воде, содержащей 1 мас.% гидроксида натрия, выдерживают в течение 1 часа, отделяют фильтрованием, промывают и сушат при температуре 60-80°С.

Конкретные загрузки, условия синтеза и выделения, а также результаты экспериментов приведены в таблице.

Из приведенных экспериментов следует, что предложенный способ позволяет получать хлорированные полимеры олефиновых углеводородов с заданным (регулируемым) содержанием хлора в удобной товарной форме.

1. Способ получения хлорированных полимеров и сополимеров олефиновых углеводородов хлорированием газообразным хлором полимеров и сополимеров олефиновых углеводородов в хлорорганическом растворителе при повышенной температуре в присутствии инициатора с последующим выделением целевого продукта путем осаждения органическим растворителем - осадителем, фильтрования, промывки и сушки, отличающийся тем, что в качестве хлорорганического растворителя используют гексахлорацетон, а выделение целевого продукта осуществляют путем обработки реакционной смеси органическим осадителем или путем ее обработки органическим разбавителем с последующим или одновременным добавлением органического осадителя, фильтрованием продукта, промывкой его органическим осадителем и обработкой при 20-110°С водой, предпочтительно содержащей гидроксид, гидрокарбонат или карбонат щелочного металла и возможно, но не обязательно, поверхностно-активное вещество.

2. Способ по п.1, отличающийся тем, что в качестве разбавителя используют растворитель, способный растворять хлорированные полимеры и сополимеры олефиновых углеводородов, преимущественно выбранный из группы, включающей алифатические и ароматические хлоруглеводороды, алкилацетаты, ароматические или циклоалифатические углеводороды или их различные смеси.

3. Способ по п.1, отличающийся тем, что в качестве осадителей используют алифатический углеводород, содержащий в своей структуре 3-12 атомов углерода, или кетон, содержащий в своей структуре 3-8 атомов углерода, или нитрил, или их различные смеси.



 

Похожие патенты:
Изобретение относится к химической технологии, а более конкретно к технологии получения перхлорированных полимеров (ПВХ) и сополимеров (СВХ) винилхлорида. .

Изобретение относится к способу улучшения перерабатываемости (технологичности) полимеров бутилкаучуков за счет увеличения в полимерной цепи количества повторяющихся звеньев, происходящих, по меньшей мере, из одного мультиолефинового мономера.
Изобретение относится к способу радикальной полимеризации для получения галогенированных полимеров. .

Изобретение относится к области автоматизации технологических процессов производства синтетического каучука и может быть использовано в производстве бутилкаучука для различного оформления процессов, например, при получении химических модифицированных каучуков.

Изобретение относится к производству галоидированных полимеров и может быть использовано в нефтехимической и химической промышленности. .
Изобретение относится к получению полигалоидных сильноосновных анионитов гелевой и макропористой структуры, предназначенных для обеззараживания воды в замкнутых экологических объектах, бытовой питьевой воды и воды из непроверенных источников.

Изобретение относится к пластмассовой, резиновой, химической, нефтехимической, лакокрасочной, авиационной и другим отраслям промышленности, перерабатывающим и применяющим пластмассы, каучуки, лаки, адгезивы.

Изобретение относится к способам полимеризации, включающим разбавители, включая фторуглеводороды, и их применение при получении новых полимеров, по существу свободных от длинноцепочечного разветвления.
Изобретение относится к химической технологии, а более конкретно к технологии получения перхлорированных полимеров (ПВХ) и сополимеров (СВХ) винилхлорида. .

Изобретение относится к области химической модификации каучуков, в частности к получению галоидированных бутилкаучуков. .
Изобретение относится к получению галогенированных полимеров, которые могут быть использованы в резиновой и шинной промышленности, в частности для изготовления автомобильных камер, боковин радиальных шин, изделий медицинского назначения, клеев, инжекционных и экструзионных изделий.

Изобретение относится к области получения модифицированных бутилкаучуков, в частности к получению бромбутилкаучука, применяемого в шинной и резинотехнической промышленности для изготовления гермослоя бескамерных шин, клеевых композиций, теплостойких лент, герметизирующих составов и т.д., и может быть использовано в промышленности СК.

Изобретение относится к области химической модификации каучуков, а именно к получению бромбутилкаучука. .

Изобретение относится к способу получения галоидированных бутилкаучуков, например, бромированных. .

Изобретение относится к способу получения хлорсодержащего катионита на основе сульфированного сополимера стирола с дивикилбензолом. .

Изобретение относится к области получения бромбутилкаучука, применяемого в шинной и резинотехнической промышленности для изготовления гермослоя бескамерных шин, клеевых композиций, теплостойких лент, герметизирующих составов
Наверх