Способ увеличения полосы пропускания многомодовой волоконно-оптической линии передачи

Изобретение относится к волоконно-оптической технике связи и может быть использовано для увеличения полосы пропускания многомодовой волоконно-оптической линии передачи. Способ увеличения полосы пропускания многомодовой волоконно-оптической линии передачи заключается в том, что у градиентного многомодового оптического волокна материал сердцевины легируют нелинейной присадкой, и при этом материал сердцевины легируют только в пределах пятна основной моды. Технический результат - увеличение полосы пропускания многомодовой волоконно-оптической линии передачи, снижение порога оптической мощности, необходимой для формирования в волокне нелинейного режима, снижение дифференциальной модовой задержки многомодового оптического волокна с провалом по оси, расширение области применения. 4 ил.

 

Изобретение относится к волоконно-оптической технике связи и может быть использовано для увеличения полосы пропускания многомодовой волоконно-оптической линии передачи.

Известен способ [1-6] увеличения полосы пропускания многомодовой волоконно-оптической линии передачи, заключающийся в том, что к многомодовому оптическому волокну через согласующее устройство подключают одномодовый источник излучения (лазер). При изготовлении многомодового оптического волокна, за счет особенностей технологии изготовления заготовок, имеет место провал профиля показателя преломления оптического волокна по оси (фиг.1 [3]). При вводе оптического излучения одномодового источника в многомодовое волокно с таким профилем в волокне распространяются две группы мод: моды низшего порядка и моды высшего порядка, в которых скорости распространения мод существенно различаются. Это приводит к дифференциальной модовой задержке, ограничивающей полосу пропускания. Согласующее устройство обеспечивает преимущественное возбуждение мод одной группы, что в значительной мере подавляет эффект дифференциальной модовой задержки в начале линии. Однако при использовании пассивных устройств подавление мод высшего порядка согласующим устройством приводит к значительным потерям мощности оптического излучения на вводе. Кроме того, вследствие связи мод, возрастающей из-за нерегулярности волокна, при распространении оптического излучения в волокне доля мощности мод высшего порядка возрастает, что ведет к дополнительному увеличению дифференциальной модовой дисперсии с увеличением длины линии и, соответственно, к ограничению полосы пропускания.

Известен способ [7] увеличения полосы пропускания многомодовой волоконно-оптической линии передачи, заключающийся в том, что в процессе изготовления многомодового оптического волокна измеряют параметры волокна и по результатам измерений этих параметров изменяют профиль показателя преломления многомодового оптического волокна так, чтобы дифференциальная модовая задержка была минимальна. Стоимость многомодовых оптических волокон, изготовленных с применением данного способа, существенно возрастает. При этом полоса пропускания ограничена значением полосы пропускания многомодового волокна с идеальным параболическим профилем без провала по оси, которое ниже значения полосы пропускания в одномодовом режиме.

Известен способ [8] увеличения полосы пропускания многомодовой волоконно-оптической линии передачи, заключающийся в том, что сердцевину градиентного многомодового оптического волокна легируют нелинейной присадкой, формируя заданный профиль показателя преломления и заданный профиль коэффициента рамановского усиления, совместно с оптическим излучением на рабочей длине волны передают по нему оптическое излучение накачки, обеспечивающее рамановское усиление мощности оптического сигнала на рабочей длине волны. Вследствие керровской нелинейности показатель преломления в сердцевине возрастает пропорционально распределению оптической мощности и профиль показателя преломления оптического волокна изменяется (Фиг.2 [8]). За счет явления самофокусировки мощность оптического излучения перераспределяется между модами высшего и низшего порядков. Отношение мощности основной моды к мощности мод высшего порядка возрастает, что и обеспечивает увеличение полосы пропускания. Однако поскольку нелинейная присадка распределена по всей сердцевине, то увеличение показателя преломления будет иметь место и за пределами пятна основной моды, что ограничивает рост этого отношения и, соответственно, полосу пропускания. Кроме того, это требует для формирования в волокне нелинейного режима значительных уровней суммарной оптической мощности в сердцевине.

Сущностью предлагаемого изобретения является увеличение полосы пропускания многомодовой волоконно-оптической линии передачи и расширение области применения.

Эта сущность достигается тем, что согласно способу увеличения полосы пропускания многомодовой волоконно-оптической линии передачи у градиентного многомодового оптического волокна материал сердцевины легируют нелинейной присадкой, при этом материал сердцевины легируют только в пределах пятна основной моды.

На фиг.1 изображен профиль показателя преломления многомодового оптического волокна; на фиг.2 изображен профиль показателя преломления многомодового оптического волокна, легированного нелинейной присадкой, при передаче оптического излучения на рабочей длине волны и оптического излучения накачки; на фиг.3 представлена структурная схема устройства для реализации заявляемого способа; на фиг.4 изображено изменение профиля показателя преломления многомодового оптического волокна, легированного в пределах пятна основной моды нелинейной присадкой, при возбуждении одномодовым источником оптического излучения.

Устройство содержит градиентное многомодовое оптическое волокно с оболочкой 1 и сердцевиной 2, легированной нелинейной присадкой в пределах пятна основной моды 3.

Устройство работает следующим образом. При подключении лазера преимущественно возбуждается основная мода. Показатель преломления материала сердцевины, легированного нелинейной присадкой, возрастает пропорционально распределению мощности оптического излучения. Поскольку материал сердцевины легирован в пределах пятна основной моды, то показатель преломления увеличивается только в этой области (фиг.4). В результате этого за счет явления самофокусировки формируется практически одномодовый режим, что обеспечивает увеличение полосы пропускания.

За счет «квазиодномодового» режима передачи предлагаемый способ обеспечивает увеличение отношения мощности основной моды к мощности мод высшего порядка и, соответственно, полосы пропускания по сравнению с известным. Кроме того, преимущественное распространение основной моды снижает порог оптической мощности, необходимой для формирования в волокне нелинейного режима. Также за счет легирования материала сердцевины вблизи оси и формирования нелинейного режима снижается дифференциальная модовая задержка многомодового оптического волокна с провалом по оси. Все это расширяет область применения способа.

ЛИТЕРАТУРА

1. Duser M., Bayvel P. 2.5 Gbit/s transmission over 4.5 km of 62.5 μm multimode fiber using centre launch technique.- Electronics letters, Vol.36, No 1, 2000.

2. Hackert M. J. Characterizing multimode fiber bandwidth for Gigabit Ethernet applications. - Corning, WP4062, august, 2001.

3. US 4723828.

4. US 6580543.

5. US 6556329 В1.

6. СА 2388997.

7. WO 2007/043060 A1.

8. WO 2005/086300 A2.

Способ увеличения полосы пропускания многомодовой волоконно-оптической линии передачи, заключающийся в том, что у градиентного многомодового оптического волокна материал сердцевины легируют нелинейной присадкой, отличающийся тем, что материал сердцевины легируют только в пределах пятна основной моды.



 

Похожие патенты:

Изобретение относится к технике оптической связи, в частности к лазерным атмосферным системам передачи информации, и может быть использовано в качестве однопролетной беспроводной линии связи, например, для организации канала связи между двумя абонентами или между абонентом и станцией абонентского доступа.

Изобретение относится к области телекоммуникации, к пассивным оптическим цепям с петлевой архитектурой. .

Изобретение относится к области приборостроения и может быть использовано для считывания графической и текстовой информации, например паспортно-визовых документов на контрольно-пропускных пограничных пунктах, в местах таможенного контроля аэропортов, железных и автомобильных дорог.

Изобретение относится к оптическому аттенюатору, используемому для ослабления оптических сигналов в области оптических коммуникаций, оптических измерений и т.п. .

Изобретение относится к волоконно-оптической технике связи и может быть использовано для увеличения полосы пропускания многомодовой волоконно-оптической линии передачи.

Изобретение относится к устройствам для считывания информации, например к устройствам для считывания информации с перемещаемых бумажных или пластиковых носителей, таких как банкноты, пластиковые карты.

Изобретение относится к оптоволоконной технике и может быть использовано в оптических усилителях, лазерах, спектральных фильтрах, газовых датчиках и телекоммуникационных сетях.

Изобретение относится к области электротехники, а именно к способам активации химических реакций с помощью оптического излучения. .

Изобретение относится к области оптических технологий и предназначено для научных исследований и технического применения в нелинейной оптике, в оптической метрологии, в спектроскопии, в волоконной оптике и в передаче информации, в медицинской оптике, в микроскопии, в физике фотонных кристаллов, в фотохимии.

Изобретение относится к одномодовому оптическому волноводному волокну с большой эффективной площадью (Аэфф) для техники связи. .

Изобретение относится к планарным волноводам

Изобретение относится к способу получения оптических планарных волноводов в ниобате лития для интегральной и нелинейной оптики

Изобретение относится к оптике и касается способа повышения плотности мощности светового излучения внутри среды. Способ включает в себя формирование среды в виде многослойной периодической структуры, имеющей в спектре пропускания запрещенную зону, а также узкие резонансные пики полного пропускания и направление в эту среду излучения, длина волны которого совпадает с одним из резонансных пиков полного пропускания. Технический результат заключается в повышении плотности мощности излучения внутри периодической среды. 2 з.п. ф-лы, 7 ил.

Изобретение относится к технологии изготовления оптических волноводов, то есть светопроводящих и светоуправляющих структур, расположенных в объеме стекла. Техническим результатом изобретения является увеличение различия в показателях преломления сердцевина-оболочка и уменьшение потерь, передаваемых по волноводу, оптического сигнала. Способ изготовления объемного волновода включает перемещение сфокусированного лазерного пучка относительно пластины или пластины относительно сфокусированного лазерного пучка до окончания формирования волновода и последующей термической обработки пластины с волноводом в печи. При этом перед формированием волновода пластину из пористого оптического материала помещают в камеру, в которой при комнатной температуре поддерживают относительную влажность воздуха не ниже 60 % и не выше 80 % в течение не менее 72 часов, но не более 96 часов. Локальное лазерное воздействие осуществляют сфокусированным пучком лазера в плоскость слоя, залегающего на глубине, равной ¼ толщины пластины, с плотностью мощности не ниже 1,5·104 Вт/см2 и не выше 2,5·104 Вт/см2. Перемещение сфокусированного лазерного пучка относительно пластины или пластины относительно сфокусированного лазерного пучка осуществляют со скоростью не менее 3 мкм/с, но не более 20 мкм/с многократно до образования волновода. Затем пластину с волноводом подвергают термической обработке при температуре не ниже 870°C, но не выше 890°C в течение не менее 10 минут и не более 20 минут, причем нагрев пластины с волноводом до температуры не выше 140°C осуществляют со скоростью не более 5°C/мин, охлаждают пластину с волноводом, после термической обработки, отключением печи. 15 ил.

Изобретение относится к области оптической локации и лазерной техники. Способ выделения части сигнала с максимальным значением интенсивности включает использование целого числа пар, состоящих из нулевого и первого туннельно-связанных нелинейно-оптических волноводов (ТСНОВ). На длине каждых ТСНОВ укладывается нечетное или четное число перекачек мощности излучения при малых входных интенсивностях, когда влиянием оптической нелинейности на процесс перекачки мощности можно пренебречь. При этом вводят сигнал с малыми и большими значениями интенсивности, влияющими вследствие нелинейности на процесс перекачки, в нулевой волновод ТСНОВ, и излучение с выхода соответственно нулевого или первого волновода ТСНОВ подают в нулевой волновод следующей пары ТСНОВ. Параметры всех ТСНОВ и диапазон интенсивности входного сигнала на входе нулевого волновода каждых ТСНОВ подобраны так, что сигнал с большим значением интенсивности выходит соответственно из нулевого волновода, при нечетном числе перекачек для малых входных интенсивностей на длине этих ТСНОВ, или из первого волновода этих ТСНОВ, при четном числе перекачек для малых входных интенсивностей на длине этих ТСНОВ. Технический результат - обеспечение выделения части сигнала с максимальным значением интенсивности оптическими средствами. 11 з.п. ф-лы, 6 ил.

Изобретение относится к лазерной обработке материалов. Способ формирования оболочки оптической волноводной структуры в объеме прозрачного материала осуществляется сверхкороткими импульсами лазерного излучения, при котором импульсы лазерного излучения фокусируют в объем прозрачного материала. Частота следования импульсов и относительное перемещение материала и фокуса выбраны так, что в фокусе происходит локальный нагрев материала выше температуры плавления. Оболочка волноводной структуры образована расположенными на расстоянии друг от друга протяженными областями с измененным показателем преломления. Технический результат - формирование волноводной структуры с заданными характеристиками сердцевины. 3 н. и 5 з.п. ф-лы, 6 ил.

Изобретение относится к области информационно-коммуникационных технологий и касается способа увеличения длины распространения инфракрасных монохроматических поверхностных электромагнитных волн (ПЭВ) по плоской металлической поверхности. Способ включает в себя нанесение на поверхность слоя непоглощающего диэлектрика. До нанесения слоя определяют направление максимума диаграммы направленности объемных электромагнитных волн (ОЭВ), излучаемых ПЭВ с их трека. Толщину слоя и показатель преломления его материала выбирают таким образом, чтобы наличие слоя обеспечивало приращение действительной части модуля волнового вектора ПЭВ на величину где ko=2π/λ - волновое число ОЭВ в окружающей поверхность среде; λ - длина волны излучения в окружающей среде; φmах - угол отклонения максимума диаграммы направленности от плоскости поверхности. Технический результат заключается в увеличении длины распространения (ПЭВ) и обеспечении ее защиты от внешних воздействий. 2 ил.

Изобретение относится к области лазерной обработки материалов, в частности к способу получения одномодового волновода, основанному на модификации стекла сфокусированным пучком фемтосекундных лазерных импульсов. Способ получения одномодового волновода основан на модификации показателя преломления прозрачного диэлектрика, включающий фокусировку фемтосекундных лазерных импульсов в объем диэлектрика и движение сфокусированного пучка по заданной траектории, приводящее к уменьшению показателя преломления материала в области фокусировки вдоль пути движения пучка. Последовательная запись нескольких треков пониженного показателя преломления, ограничивающих область из непромодифицированного материала, приводит к созданию одномодового волновода. При этом в качестве прозрачного диэлектрика используют теллуритное стекло, а фемтосекундный лазер генерирует на длине волны 1028 нм импульсы с частотой в интервале 1-1000 кГц длительностью 150-500 фс и с энергией 14-200 нДж, при перемещении сфокусированного объективом с числовой апертурой в диапазоне 0.3-0.9 лазерного пучка относительно стекла в скоростном интервале 0.033-20 мм/с, шаг между треками, формирующими оболочку волновода, находится в интервале 1.4-3.6 мкм. Технический результат - создание структуры с оболочкой с пониженным показателем преломления в стекле. 8 пр., 3 ил.
Наверх