Способ получения литого сплава на основе кобальта в режиме горения

Изобретение относится к порошковой металлургии, в частности к получению литых сплавов на основе кобальта. Может использоваться для получения защитных покрытий на деталях машин и механизмов, работающих в условиях интенсивного износа, высокой температуры и воздействия агрессивных сред. Готовят реакционную смесь исходных компонентов, содержащую оксид хрома III, оксид ниобия, оксид вольфрама, оксид молибдена, алюминий, графит, оксид кобальта, рений и/или рутений, мас.%: оксид хрома III 15,0-25,0, оксид ниобия 13,0-22,0, оксид вольфрама 0,7-4,8, оксид молибдена 1,0-1,7, алюминий 20,0-26,0, углерод 2,2-4,5, рений и/или рутений 0,5-2,0, оксид кобальта - остальное. Реакционную смесь помещают в тугоплавкую форму с размещенным между смесью и стенкой формы функциональным слоем из оксида алюминия. Форму размещают на центрифуге, воспламеняют смесь и проводят синтез в режиме горения при центробежном ускорении 50-100 g. Способ позволяет повысить выход продукта, снизить содержание в сплаве примесей, повысить однородность структуры и температуру эксплуатации сплава. 2 табл.

 

Изобретение относится к порошковой металлургии, в частности к способам получения литых сплавов на основе кобальта, которые могут быть использованы для получения защитных покрытий на деталях машин и механизмов, работающих в условиях интенсивного износа, высокой температуры и воздействия агрессивных сред, в области авиационного двигателестроения для получения защитных покрытий на бандажных полках лопаток газотурбинного двигателя (ГТД), на магистральных трубопроводах при транспортировке газа, а также при производстве электроэнергии и в области железнодорожного транспорта.

Известен способ получения многослойного сплава на никелевой или кобальтовой основе путем нанесения на элемент, образованный из никеля или кобальта, металла-наполнителя, состоящего из порошкового реактива или порошка суперсплава, соответствующего интерметаллическому соединению, с последующим проведением реакции синтеза в камере, которая находится под гидростатическим давлением инертного газа до 1,5 ГПа. Регулирование температуры до 1200°С при скорости повышения 5-120 град/мин, обеспечивается с помощью нагревательных элементов и способствует установлению перепада температур в 200°С от одного конца к другому (JP 10237507, 08.09.1998 г.).

Недостатком известного способа является сложность получения сплава, необходимость использования дорогостоящего оборудования и дорогостоящих металлических легирующих компонентов, невысокая производительность и большие энергозатраты.

Наиболее близким аналогом к заявляемому является способ получения литого сплава на основе кобальта в режиме горения (RU 2270877 С1, 27.02.2006). Способ включает приготовление реакционной смеси исходных компонентов, содержащей оксид молибдена, алюминий, углерод, оксид хрома III, оксид ниобия, оксид вольфрама и оксид кобальта, помещение реакционной смеси в тугоплавкую форму с размещенным между исходной смесью и стенкой формы функциональным слоем из оксида алюминия, размещение формы на центрифуге, воспламенение смеси и проведение синтеза в режиме горения при центробежном ускорении 30-50 g с последующим отделением литого сплава на основе кобальта от продукта синтеза, при этом исходную смесь готовят при следующем соотношении компонентов, мас.%: оксид молибдена 1,1-1,8, алюминий 20,0-23,5, углерод 2,2-2,8, оксид хрома III 15,0-19,0, оксид ниобия 13,0-16,0, оксид вольфрама 1,0-2,8, оксид кобальта 35,0-45,0. Температура эксплуатации известного сплава не выше 1000°С. Основная область его использования - для конструктивного упрочнения бандажных полок в лопатках газотурбинных двигателей.

Техническим результатом заявляемого изобретения является повышение выхода целевого продукта, снижение содержания примесей в сплаве, повышение однородности структуры, повышение температуры эксплуатации сплава до 1100°С, что расширяет области использования сплава.

Технический результат достигается тем, что способ получения литого сплава на основе кобальта в режиме горения включает приготовление реакционной смеси исходных компонентов, содержащей оксид хрома III, оксид ниобия, оксид вольфрама, оксид молибдена, алюминий, углерод, оксид кобальта, рений и/или рутений, помещение реакционной смеси в тугоплавкую форму с размещенным между исходной смесью и стенкой формы функциональным слоем из оксида алюминия, размещение формы на центрифуге, воспламенение смеси и проведение синтеза в режиме горения при центробежном ускорении 50-100 g, при следующем соотношении исходных компонентов, мас.%:

Оксид хрома III 15,0-25,0
Оксид ниобия 13,0-22,0
Оксид вольфрама 0,7-4,8
Оксид молибдена 1,0-1,7
Алюминий 20,0-26,0
Углерод 2,2-4,5
Рений и/или рутений 0,5-2,0,
Оксид кобальта Остальное

Заявляемая в формуле совокупность признаков позволяет получать литой жаропрочный многокомпонентный сплав на основе кобальта, который может быть использован для получения защитных покрытий на деталях машин и механизмов, работающих в условиях интенсивного износа, высокой температуры и воздействия агрессивных сред, в области авиационного двигателестроения для получения защитных покрытий на бандажных полках лопаток газотурбинного двигателя (ГТД), на магистральных трубопроводах при транспортировке газа, а также в области железнодорожного транспорта.

Сущность способа поясняется примерами.

Пример 1.

Готовят реакционную смесь исходных компонентов при следующем соотношении, мас.%: оксид хрома III 15,0; оксид ниобия 14,4; оксид вольфрама 0,7; оксид молибдена 1,7; алюминий 20,0; графит 2,2; оксид кобальта - 45,0; рений 1,0.

Предварительно в тугоплавкую графитовую форму устанавливают тонкостенный цилиндр из цветного металла или плотной бумаги с зазором от его стенки до внутренней поверхности графитовой формы 5 мм. Готовую смесь засыпают в цилиндр, а в зазор между цилиндром и формой засыпают функциональный слой из оксида алюминия. Цилиндр извлекают, а снаряженную форму из реакционной смеси и функционального слоя толщиной 5 мм помещают в центробежную установку. Ротор центрифуги приводят во вращение и создают перегрузку 50 g, после чего реакционную смесь воспламеняют электрической спиралью.

После завершения процесса горения продукт синтеза охлаждают и извлекают из реакционной формы. Продукт синтеза состоит из двух слоев: нижний - целевой продукт в виде литого жаропрочного твердого сплава на основе кобальта (Co-Cr-Nb-W-Mo-Al-Re-C), и верхний - литой оксидный материал Al2O3 (корунд). Слои легко отделяются друг от друга.

Содержание элементов в целевом продукте составляет мас:%: Cr - 19, Nb - 15, W - 2,7, Mo - 1,9, Al - 0,9, Re - 1,3, С - 1,95, Со - остальное.

Содержание примесей в сплаве 0,02 мас.%.

Примеры осуществления способа представлены в таблице 1. Свойства целевого материала по примерам представлены в таблице 2.

Для примера 2 содержание рения в сплаве составляет 1,5 мас.%, рутения 1,2 мас.%; для примера 3 содержание рутения в сплаве составляет 0,9 мас.%.

Толщина функционального слоя зависит от массы и объема исходной смеси и может изменяться в широких пределах. Указанные примеры не ограничивают возможности способа относительно толщины функционального слоя. Специалистам, работающим в области СВС, это хорошо известно.

Полученный заявленным способом литой сплав содержит не более 0,02% примесей, в сплаве отсутствуют ликвационные неоднородности, выход его составляет не менее 97%. Сплав имеет однородную структуру с равномерным распределением элементов по объему, стойкость его при эксплуатации составляет 1100°С. Указанные свойства сплава расширяют области его использования по сравнению с известным и распространяются на такие области, как машиностроение, магистральные трубопроводы, железнодорожный транспорт и пр.

Таблица 1
№ примера Состав реакционной смеси компонентов, мас.% Величина гравитации, g Толщина слоя засыпки, мм
оксид хрома III оксид ниобия оксид вольфрама оксид молибдена алюминий Графит оксид кобальта Рений и/или рутений
1 15 14,4 0,7 1,7 20 2,2 45 1,0
(Re)
50 5
2 16 13 1,1 1,1 26 2,2 38,6 2,0
(1 Re + 1 Ru)
75 6
3 25 22 4,8 1,0 21,5 4,5 20,7 0,5
(Ru)
100 10

Таблица 2
№ примера Характеристики целевого продукта
Содержание примесей, мас.% Выход годного сплава по химическому составу, % Наличие ликвации
1 0,02 97 Отсутствует
2 0,04 98 Отсутствует
3 0,05 99 Отсутствует

Способ получения литого сплава на основе кобальта в режиме горения, включающий приготовление реакционной смеси исходных компонентов, содержащей оксид хрома III, оксид ниобия, оксид вольфрама, оксид молибдена, алюминий, графит и оксид кобальта, помещение реакционной смеси в тугоплавкую форму, размещение между смесью и стенкой формы функционального слоя из оксида алюминия, размещение формы на центрифуге, воспламенение смеси и проведение синтеза в режиме горения при центробежном ускорении, отличающийся тем, что в реакционную смесь дополнительно вводят рений и/или рутений при следующем соотношении исходных компонентов, мас.%:

оксид хрома III 15,0-25,0
оксид ниобия 13,0-22,0
оксид вольфрама 0,7-4,8
оксид молибдена 1,0-1,7
алюминий 20,0-26,0
графит 2,2-4,5
рений и/или рутений 0,5-2,0
оксид кобальта остальное

а синтез проводят при центробежном ускорении 50-100 g.



 

Похожие патенты:

Изобретение относится к металлургии и к сварочному производству, и может быть использовано для изготовления сплавов на кобальтовой основе и присадочных металлов из этих сплавов для сварки, наплавки и ремонта сваркой ответственных деталей из высоколегированных жаропрочных никелевых и кобальтовых сплавов деталей горячего тракта авиационных газотурбинных двигателей, работающих при высоких температурах (более 900°С).
Изобретение относится к порошковой металлургии, в частности к антифрикционным материалам на основе кобальта. .
Изобретение относится к металлургии и может быть использовано в стоматологии при изготовлении каркасов зубных коронок и мостов, предназначенных к последующей облицовке керамическими материалами, у которых диапазон среднего значения термического коэффициента линейного расширения (ТКЛР) составляет 13,5-14,5×10 -6 К-1 в интервале температур 250-550°С.
Изобретение относится к области металлургии, в частности к составам сплавов на основе кобальта, которые могут быть использованы для изготовления лопаток турбореактивных двигателей.
Изобретение относится к области металлургии, в частности к составам сплавов на основе кобальта, которые могут быть использованы в энергетическом машиностроении. .
Изобретение относится к области металлургии, в частности к составам литейных сплавов на основе кобальта, которые могут быть использованы для изготовления лопаток турбореактивных двигателей.
Изобретение относится к области приборостроения и может использоваться в качестве материала для термомагнитной записи при создании магнитооптических запоминающих устройств.

Изобретение относится к области металлургии жаропрочных деформируемых свариваемых сплавов на основе кобальта и может быть использовано для изготовления жаровых труб камер сгорания, стабилизаторов пламени и других горячих узлов и двигателей ГТД, работающих при температуре до 1300°С.

Изобретение относится к металлургии прецизионных сплавов на основе кобальта, которые могут применяться для изготовления высокопрочных аморфных материалов в виде лент с высоким значением магнитной проницаемости.
Изобретение относится к порошковой металлургии, в частности к получению композиционных керамических порошков на основе нитрида кремния и диоксида циркония. .
Изобретение относится к черной и цветной металлургии, в частности к утилизации кремнийсодержащих отходов. .
Изобретение относится к нанохимическим способам получения композиционных материалов. .
Изобретение относится к порошковой металлургии, в частности к составам шихты для получения пористого проницаемого материала методом самораспространяющегося высокотемпературного синтеза (СВС).
Изобретение относится к порошковой металлургии, в частности в технологии лазерного синтеза методом селективного лазерного спекания. .

Изобретение относится к области металлургии, а именно к получению литых сплавов на основе алюминидов титана, которые могут быть использованы в авиационной и аэрокосмической промышленности для производства изделий и покрытий, в частности для производства деталей газотурбинного двигателя.

Изобретение относится к порошковой металлургии, в частности к получению пористого сплава на основе никелида титана методом СВС. .

Изобретение относится к порошковой металлургии, в частности к получению пористого никеля, и может использоваться при изготовлении воздушных и жидкостных фильтров, основы нейтрализаторов, электродов, составных элементов катализаторов и носителей катализаторов.
Изобретение относится к технологии композиционных материалов и может быть использовано для получения прочных, износостойких изделий, а также для изготовления абразивного инструмента.

Изобретение относится к порошковой металлургии, в частности к получению крупнопористых термостойких труб, может использоваться в теплоэнергетике в качестве насадок на газовые горелки.
Изобретение относится к порошковой металлургии, в частности к получению порошковых материалов на основе алюминидов металлов методом СВС
Наверх