Способ определения запаса газодинамической устойчивости газотурбинного двигателя

Изобретение относится к авиации и предназначено для испытаний самолетов с газотурбинными двигателями на любых режимах. Способ заключается в том, что измеряют высоту полета и число Маха и на входе в двигатель - матрицу поля полных давлений воздушного потока и матрицу пульсаций полного давления, определяют окружную неравномерность и интенсивность пульсаций полного давления, вычисляют параметр неоднородности потока и запас газодинамической устойчивости двигателя. Отличается тем, что для определения интенсивности пульсаций выбирают диапазон частот пульсаций, характерный для двигателя, выполняют прямое преобразование Фурье матрицы пульсаций, фильтруют результат преобразования в выбранном диапазоне частот пульсаций, выполняют обратное преобразование Фурье, находят дисперсию матрицы, полученной при обратном преобразовании, по найденной дисперсии определяют интенсивность пульсаций полного давления. Изобретение позволяет точно определить запас устойчивости газотурбинного двигателя при любом режиме его работы и полета. 2 ил.

 

Изобретение относится к авиации, а именно - к определению параметров силовой установки самолета. Может быть применено при испытаниях самолетов с газотурбинными двигателями (ГТД) на всех возможных режимах полета.

Нарушение устойчивой работы газотурбинного двигателя, называемое потерей газодинамической устойчивости (ГДУ) двигателя, является одним из наиболее опасных отказов авиационной силовой установки. Поэтому в эксплуатации работа на режимах, где рабочая точка на характеристике компрессора располагается вблизи границы устойчивости, т.е. где запас устойчивости мал, недопустима.

Известен способ контроля запасов газодинамической устойчивости газотурбинного двигателя в серийном производстве (а.с. СССР №1271213, G01M 15/00). Его недостатком является невозможность учесть влияние некоторых факторов, которые проявляются в условиях полета.

Известен также способ определения запасов устойчивости газотурбинного двигателя (патент РФ №2024001, G01M 15/00), в котором варьируют температуру газа перед входом в компрессор, площадь выходного насадка подачи топлива, добиваются срыва и регистрируют параметры компрессора, частоту вращения, температуру воздуха и с их учетом по характеристике компрессора определяют запасы устойчивости. Его недостатком также является невозможность учесть влияние факторов, проявляющихся в условиях полета.

Известен способ определения запасов газодинамической устойчивости, описанный в [1. Нечаев Ю.Н., Федоров P.M. Теория авиационных газотурбинных двигателей. Часть 1. - М.: Машиностроение, 1977, с.153-154]. Запас газодинамической устойчивости ΔKу ГТД при каждом значении приведенных оборотов двигателя определяют по соотношению значений степени повышения давления компрессора и приведенного расхода воздуха Gв.пр в рабочей точке и на границе устойчивости. Если и Gв.пр.раб есть степень повышения давления и приведенный расход в рабочей точке, а и Gв.пр.г - то же на границе устойчивости при том же значении приведенных оборотов двигателя nпр, то запас устойчивости ΔKу определяют выражением

Недостатком этого способа является необходимость измерения приведенного расхода воздуха, что в условиях летных испытаний вызывает значительные трудности.

Известен способ определения газодинамической устойчивости компрессора газотурбинного двигателя в условиях эксплуатации (публикация UA №13488), заключающийся в том, что определяют рабочие характеристики и предел устойчивости компрессора по частоте вращения и термодинамическим параметрам, измеряют действительный расход воздуха, проходящего через компрессор, и давление воздуха на выходе компрессора. Недостатком этого способа также является необходимость измерения приведенного расхода воздуха, что в условиях летных испытаний вызывает значительные трудности.

Прототипом изобретения является способ определения запаса устойчивости по суммарному параметру неоднородности потока W [2. Ремеев Н.Х. Аэродинамика воздухозаборников сверхзвуковых самолетов, г.Жуковский. Издательский отдел ЦАГИ, 2002, с.96-106]. В этом способе на входе в двигатель измеряют поле полных давлений воздушного потока и распределение пульсаций полного давления (обе величины представляют собой наборы данных о давлении от некоторого числа датчиков и могут быть представлены как матрицы), а также измеряют высоту полета Н и число Маха М.

По высоте полета и числу Маха находят полное давление воздуха в набегающем потоке . С учетом по матрице поля полных давлений вычисляют окружную неравномерность Δσ0 следующим образом:

,

где σcp - коэффициент восстановления полного давления на входе в двигатель, который равен отношению полного среднего давления на входе в двигатель , определяемого по измеренной матрице поля полных давлений воздушного потока на входе в двигатель, к полному давлению воздуха в набегающем потоке [см. также 1, с.252]:

;

σ0 - среднее значение коэффициента восстановления полного давления в секторе пониженного давления [2, с.96]:

,

где φ021 - протяженность сектора пониженного давления (φ1 - начало сектора пониженного давления, φ2 - конец сектора пониженного давления),

σr - среднее значение коэффициента восстановления полного давления вдоль различных радиусов.

По измеренной матрице пульсаций полного давления определяют интенсивность пульсаций полного давления из соотношения

где D - дисперсия пульсаций полного давления, - среднеквадратичное отклонение.

Суммарный параметр неоднородности потока W вычисляют через окружную неравномерность Δσ0 потока воздуха и интенсивность пульсаций ε полного давления на входе в двигатель [2, с.105]:

W=Δσ0+ε.

Наконец, запас газодинамической устойчивости ΔKy вычисляют по формуле

ΔKу=Wпред-W,

где Wпред - предельное значение параметра неоднородности потока.

Пульсации полного давления относятся к классу случайных процессов, имеющих широкополосный частотный спектр. Границы рабочего диапазона частот назначены в зависимости от размера объекта испытаний (двигателя) для соблюдения равных условий сравнения различных объектов между собой на основе одинаковых чисел Струхаля [2, с.104]. Диапазон рабочих частот при определении дисперсии матрицы пульсаций полного давления (или ее среднеквадратичного отклонения - СКО) ограничивается полосой от fmin=2 Гц до частоты fmax, определяемой формулой

,

где Vвх.max - максимальная скорость потока во входном сечении; Rвх - радиус входного сечения [2, с.102]. Обычно для двигателя fmax находится в пределах 300…400 Гц.

Известны две возможности определения СКО для реализации известного способа. Одна из них заключается в том, что сигналы с датчиков пульсаций регистрируют высокочастотным накопителем. В этом случае для определения СКО пульсаций давления в заданном диапазоне частот необходимо наличие спектроанализатора или специальной дорогостоящей аппаратуры, что является существенным недостатком.

Другая возможность определения СКО пульсаций давления состоит в измерении с помощью аналогового вычислителя дисперсии с последующей регистрацией как низкочастотного параметра. В этом случае СКО пульсаций измеряется в чрезмерно широком диапазоне частот (для вычислителя дисперсии 6СВД, например, СКО пульсаций измеряется в диапазоне частот 0…4000 Гц, при требуемом диапазоне

fmin…fmax Гц), что может приводить к ошибкам по определению его значений (фиг.2). При этом выборка, используемая для расчета СКО, ограничена временным интервалом осреднения (для вычислителя дисперсии 6СВД имеется только три значения временного интервала осреднения: 0,1 с, 0,5 с, 1 с), что также является недостатком.

Задачей изобретения является повышение точности определения запаса газодинамической устойчивости газотурбинного двигателя на всех режимах полета самолета и работы двигателя.

Задача решается с помощью способа определения запаса газодинамической устойчивости газотурбинного двигателя, в котором измеряют высоту полета и число Маха и на входе в двигатель измеряют значения элементов матрицы поля полных давлений воздушного потока и значения элементов матрицы пульсаций полного давления, по матрице поля полных давлений, высоте полета и числу Маха определяют окружную неравномерность, по матрице пульсаций полного давления определяют интенсивность пульсаций полного давления, вычисляют по окружной неравномерности и интенсивности пульсаций полного давления параметр неоднородности потока и определяют запас газодинамической устойчивости двигателя, отличающегося тем, что для определения интенсивности пульсаций полного давления выбирают диапазон частот пульсаций, характерный для упомянутого двигателя, выполняют прямое преобразование Фурье матрицы пульсаций полного давления, выполняют фильтрацию результата упомянутого преобразования в выбранном диапазоне частот пульсаций, выполняют обратное преобразование Фурье, находят дисперсию матрицы, полученной в результате обратного преобразования, и по найденной дисперсии определяют интенсивность пульсаций полного давления.

Предлагаемый способ позволяет более точно определить запас устойчивости газотурбинного двигателя при любом режиме его работы и полета за счет устранения влияния посторонних факторов.

Изобретение поясняется чертежами.

На фиг.1 показаны исходная запись пульсаций полного давления P1, Р2, …, Рк в некотором интервале времени и соответствующая этому интервалу зависимость интенсивности пульсаций полного давления εф от времени, рассчитанная в результате применения предлагаемого способа.

На фиг.2 показаны результаты определения суммарного параметра неоднородности потока и запаса устойчивости известным (W и ΔKу) и предлагаемым (Wф и ΔKу.ф) способами.

Предлагаемый способ заключается в следующем.

1. В процессе испытаний во время полета измеряют высоту полета Н и число Маха М и на входе в двигатель измеряют значения элементов матрицы А поля полных давлений воздушного потока и значения элементов матрицы В пульсаций полного давления. Для измерения элементов матрицы А поля полных давлений используют наборы групповых приемников полного давления, для измерения элементов матрицы В пульсаций - наборы измерителей пульсаций полного давления [3. Летные испытания специальных устройств и систем силовых установок самолетов и вертолетов. /Под ред. Г.П.Долголенко, М.: Машиностроение, 1984, с.8].

2. По матрице А поля полных давлений, высоте полета Н и числу Маха М определяют окружную неравномерность. Более конкретно это делают таким образом. По высоте полета Н определяют атмосферное давление р [4. Государственный стандарт Союза СССР Стандартная атмосфера. Параметры. ГОСТ 4401-73. Москва, 1974, с.92-95]. По p и числу Маха М вычисляют полное давление воздуха в набегающем потоке [5. Фабрикант Н.Я. Аэродинамика. Общий курс. М.: Наука, 1964, с.115]. Определяют окружную неравномерность

где σср - коэффициент восстановления полного давления на входе в двигатель,

где - полное среднее давление на входе в двигатель, определенное по измеренной матрице А поля полных давлений воздушного потока на входе в двигатель (например, среднее арифметическое элементов матрицы А),

- полное давление воздуха в набегающем потоке.

3. По измеренной матрице В пульсаций полного давления определяют интенсивность пульсаций полного давления. В отличие от известного способа для определения интенсивности пульсаций выбирают диапазон частот пульсаций от fmin до fmax, характерный для исследуемого двигателя, что является существенным признаком предлагаемого способа. Выполняют прямое преобразование Фурье измеренной матрицы В пульсаций полного давления, используя время в качестве переменной для этого преобразования (преобразования Фурье описаны, например, в 6. Бронштейн И.Н., Семендяев К.А. Справочник по математике. М.: Наука, 1980, с.755-757; 7. Бендат Дж., Пирсол А. Прикладной анализ случайных данных. М.: Мир, 1989, с.364-365). Затем выполняют фильтрацию результата упомянутого преобразования в выбранном диапазоне частот пульсаций от fmin до fmax, т.е. отбрасывают гармоники частот, находящихся вне этого диапазона. Выполняют обратное преобразование Фурье. Для матрицы В* пульсаций полного давления, полученной в результате обратного преобразования Фурье, находят дисперсию D этой матрицы (см. 5, с.788-789) и по дисперсии определяют интенсивность пульсаций полного давления εф:

4. По окружной неравномерности Δσ0 и интенсивности пульсаций полного давления εф вычисляют уточненный параметр неоднородности потока Wф

Wф=Δσ0ф.

5. Определяют запас газодинамической устойчивости двигателя как разность между предельным Wпред и уточненным Wф значениями коэффициента неоднородности протока

ΔKу.ф=Wпред-Wф.

Для реализации вычислительной части предлагаемого способа разработана программа в среде математической системы «Mathcad». Результаты применения предлагаемого способа показаны на фиг.2.

Способ определения запаса газодинамической устойчивости газотурбинного двигателя, заключающийся в том, что измеряют высоту полета и число Маха и на входе в двигатель измеряют значения элементов матрицы поля полных давлений воздушного потока и значения элементов матрицы пульсаций полного давления, по матрице поля полных давлений, высоте полета и числу Маха определяют окружную неравномерность, по матрице пульсаций полного давления определяют интенсивность пульсаций полного давления, вычисляют по окружной неравномерности и интенсивности пульсаций полного давления параметр неоднородности потока и определяют запас газодинамической устойчивости двигателя, отличающийся тем, что для определения интенсивности пульсаций полного давления выбирают диапазон частот пульсаций, характерный для упомянутого двигателя, выполняют прямое преобразование Фурье матрицы пульсаций полного давления, выполняют фильтрацию результата упомянутого преобразования в выбранном диапазоне частот пульсаций, выполняют обратное преобразование Фурье, находят дисперсию матрицы, полученной в результате обратного преобразования, и по найденной дисперсии определяют интенсивность пульсаций полного давления.



 

Похожие патенты:

Изобретение относится к области монтажных и диагностических работ с использованием лазерных средств наведения и может быть использовано для монтажа, диагностики и центровки осей сопрягаемых вращающихся валов - приводного вала тормозной установки моторного стенда и коленчатого вала двигателя внутреннего сгорания (далее ДВС) при монтаже ДВС на моторном стенде.

Изобретение относится к области авиационного двигателестроения и может быть использовано для испытаний электронных систем (САУ) автоматического управления газотурбинными двигателями (ГТД) с блоком встроенного контроля (БВК).

Изобретение относится к способу определения рабочего состояния фильтра для пропускания жидкости, в частности фильтра систем подачи топлива. .

Изобретение относится к двигателестроению, в частности устройствам для диагностики автотракторных двигателей в условиях эксплуатации. .

Изобретение относится к области испытательной техники, а именно к стендам для огневых испытаний жидкостных ракетных двигателей меньшей мощности относительно расчетной для газодинамической трубы.

Изобретение относится к области измерительной техники, а именно для повышения эффективности и оперативности диагностики технического состояния газотурбинных двигателей в процессе их производства, испытаний и эксплуатации.

Изобретение относится к испытаниям лопаточных машин, в частности турбокомпрессоров для наддува двигателей внутреннего сгорания, и может найти широкое применение при испытаниях.

Изобретение относится к испытательной технике, в частности к редукторным установкам для моторостроения и стендам для испытания двигателей, включающим зубчатые редукторы и нагрузочные устройства.

Изобретение относится к ракетной технике и может быть использовано при создании сопловых насадков из углерод-углеродного композиционного материала (УУКМ) к соплам жидкостных ракетных двигателей (ЖРД), работающих, в том числе, в условиях одновременного воздействия окислительной среды на обе поверхности насадка: высокотемпературной окислительной газовой среды на рабочую (внутреннюю) поверхность и воздуха - на наружную.

Изобретение относится к стендам для испытания жидкостных ракетных двигателей большой мощности. .

Изобретение относится к двигателестроению, в частности к способам, используемым для управления работой двигателя внутреннего сгорания (ДВС) с распределенным впрыском топлива

Изобретение относится к области диагностики технического состояния центробежных перекачивающих агрегатов (ЦПА) и может быть использовано для обеспечения бесперебойной работы при эксплуатации перекачивающих станций углеводородного сырья в нефтяной, газовой, нефтеперерабатывающей и других отраслях промышленности

Изобретение относится к области электротехники, электроники и теплотехники, может быть использовано для определения технического состояния дизель-электрических станций, применяемых в различных системах

Изобретение относится к технике испытания двигателей внутреннего сгорания преимущественно в эксплуатационных условиях

Изобретение относится к стендовому оборудованию, обеспечивающему наземную отработку высотных ракетных двигателей в условиях, приближенных к летным

Изобретение относится к стендам для «холодной» обкатки турбокомпрессоров энергетических установок и, в частности, для обкатки турбокомпрессоров двигателей внутреннего сгорания и обеспечивает режим «холодной» обкатки при номинальной частоте вращения ротора

Изобретение относится к системам наземного обслуживания воздушных судов (ВС) и может быть использовано для прогонки турбин авиадвигателей в зоне аэропортов

Изобретение относится к теплотехнике
Наверх