Способ производства термомеханически обработанных горячекатаных труб

Изобретение относится к трубопрокатному производству. Для повышения ударной вязкости трубу после окончания горячей пластической деформации охлаждают со скоростью, предотвращающей распад аустенита, до температуры, лежащей в интервале мартенситного превращения, а затем охлаждают на воздухе и проводят нагрев в индукторе, питаемом переменным током частотой 50…60 Гц, до температуры 740-760°С в течение 1-1,5 мин, выдерживают в течение 2-4 мин и окончательно охлаждают на воздухе.

 

Изобретение относится к термической обработке в трубопрокатном производстве.

Известен способ термомеханической обработки бесшовных труб [Авторское свидетельство СССР №347355, Кл. C21D 9/08, 1972], являющийся, по существу, одной из разновидностей высокотемпературной термомеханической обработки (ВТМО), поскольку при его осуществлении трубы, материал которых находится в состоянии аустенита, после горячей пластической деформации подвергают контролируемому охлаждению. В самом деле, согласно изобретению данный способ включает горячую пластическую деформацию труб и охлаждение, состоящее из начального, совершаемого со скоростью, предотвращающей распад аустенита, а затем окончательного на воздухе. По мнению авторов изобретения, такое непрерывное двухстадийное охлаждение позволяет получить бейнитную структуру, обеспечивающую высокую прочность и удовлетворительную пластичность.

Однако не все стали при непрерывном ускоренном, пусть и двухстадийном, охлаждении дают устойчивое бейнитное превращение, которое гарантированно можно обеспечить только путем изотермической закалки. Так, при непрерывном ускоренном охлаждении сталей (например, высокоуглеродистых и некоторых легированных), у которых точки начала мартенситного превращения и начала бейнитного превращения близки и составляют 450…500°С, основная часть исходного аустенита превращается в мартенсит, и только небольшая часть остаточного аустенита превращается в бейнит, т.е. образуется смешанная мартенситно-бейнитная структура, обладающая при высокой прочности низкой пластичностью и вязкостью [Металловедение и термическая обработка стали: Справочник в 3-х т. под ред. Бернштейна М.Л. и Рахштадта А.Г. Т.2. - Основы термической обработки. М.: Металлургия, 1983, с.150-153].

Поставлена техническая задача: повысить ударную вязкость горячекатаной трубы.

Поставленная задача решается созданием способа производства термомеханически обработанных горячекатаных труб, включающим горячую пластическую деформацию трубы, ее охлаждение со скоростью, предотвращающей распад аустенита, и последующее охлаждение на воздухе, в котором согласно изобретению охлаждение со скоростью, предотвращающей распад аустенита, осуществляют до температуры, лежащей в интервале мартенситного превращения, а после охлаждения на воздухе трубу нагревают в индукторе, питаемом переменным током частотой 50…60 Гц, до температуры 740…760°С в течение 1…1,5 мин, выдерживают в течение 2…4 мин и окончательно охлаждают на воздухе.

Применение индукционного метода нагрева обеспечивает высокоскоростной и равномерный по объему прогрев труб и тем самым высокую производительность, а простота конструкции индукционных установок, использующих для питания сетевой ток частотой 50…60 Гц, гарантирует минимум капитальных затрат. Кроме того, применение тока частотой 50…60 Гц позволяет ограничивать температуру нагрева значениями 740…760°С. Данная температура несколько выше допустимых температур для обычного печного отпуска, поскольку она превышает критические значения, однако благодаря высокой скорости нагрева и последующей короткой выдержке превращения в материале труб запаздывают и не переходят в критическую стадию, чем и достигается эффект, аналогичный печному отпуску. В результате формируется структура сорбита отпуска, что в итоге гарантирует достаточную прочность обработанного материала при его высокой пластичности и вязкости.

Изменяя время выдержки при данной температуре, получают требуемые значения твердости и прочности. Так, сокращая время выдержки, обеспечивают повышение твердости и прочности. Наращивание же времени выдержки понижает твердость и прочность.

Известно, что скорость охлаждения, предотвращающая распад аустенита, называемая также сверхкритической скоростью, для разных сталей различна и определяется их химическим составом. В частности, для сталей мартенситного класса (например, 40Х13) данная скорость обеспечивается обычным охлаждением на воздухе, т.е. непрерывное охлаждение на воздухе оказывается также и тем двухстадийным, которое используется в предлагаемом способе, поскольку сначала при охлаждении с температуры окончания горячей пластической деформации блокируется перлитный распад аустенита, а затем, после того как температура упадет ниже точки начала мартенситного превращения, аустенит трансформируется в мартенсит. Для других же сталей сверхкритическая скорость охлаждения достигается выбором охлаждающей среды, в качестве которой можно использовать влажную (водо-воздушную), водную, масляную, эмульсионную, а также и мощную струю направленного воздуха.

Пример 1. Горячекатаную трубу из стали 45Х, имеющую наружный диаметр 92 мм, длину - 1100 мм и толщину стенки - 13 мм, после ее выхода из калибровочного стана охлаждали от температуры 880°С, при которой сталь 45Х имеет аустенитное состояние, до температуры 260°С со скоростью, равной 31°С/с, что для этой стали гарантированно исключает распад аустенита. Данную скорость охлаждения обеспечили выдержкой трубы в воде, имеющей температуру 35°С, в течение 20 с, после чего трубу охлаждали на воздухе до температуры не более 60°С. Далее трубу нагревали до температуры 740°С в течение 1 мин и выдерживали при этой температуре в течение 3 мин, осуществляя нагрев и выдержку путем поступательного перемещения трубы со скоростью 0,017 м/с через индуктор диаметром 180 мм и длиной 4 м, питаемый переменным током частотой 50 Гц под напряжением 380 В. После выхода из индуктора трубу охлаждали на воздухе до температуры окружающей среды.

Механические свойства готовых труб следующие: предел текучести - 510…540 МПа, предел прочности - 720…760 МПа, относительное удлинение - 22…25%, ударная вязкость при температуре 20°С - 1,4…1,6 МДж/м2, а при -40°С - 0,7…0,9 МДж/м2. Полученный результат показывает, что трубы могут успешно эксплуатироваться в условиях отрицательных температур.

Пример 2. Трубу из стали 30ХМА диаметром 102 мм с толщиной стенки 7 мм и длиной 1500 мм после ее выхода из калибровочного стана охлаждали воздушным потоком, создаваемым вентилятором мощностью 25 кВт, с температуры 880°С до температуры 260°С в течение 50 с, что обеспечило скорость охлаждения 12,5°С/с, затем охлаждали на спокойном воздухе до температуры не выше 60°С. Далее трубу нагревали до температуры 760°С за 1 мин и выдерживали в при этой температуре в течение 4 мин путем поступательного перемещения со скоростью 0,013 м/с через индуктор диаметром 180 мм и длиной 4 м, питаемый переменным током 50 Гц под напряжением 380 В, после чего окончательно охлаждали на воздухе.

Механические свойства труб: предел текучести - 630…650 МПа, предел прочности - 920…950 МПа, относительное удлинение - 20…22%, ударная вязкость - 0,9…1,2 МДж/м2. Это означает, что эффект обратимой отпускной хрупкости был подавлен.

Способ производства термомеханически обработанных горячекатаных труб, включающий горячую пластическую деформацию трубы, охлаждение со скоростью, предотвращающей распад аустенита, и последующее охлаждение на воздухе, отличающийся тем, что охлаждение со скоростью, предотвращающей распад аустенита, осуществляют до температуры, лежащей в интервале мартенситного превращения, а после охлаждения на воздухе трубу нагревают в индукторе, питаемом переменным током частотой 50-60 Гц, до температуры 740-760°С в течение 1-1,5 мин, выдерживают в течение 2-4 мин и окончательно охлаждают на воздухе.



 

Похожие патенты:

Изобретение относится к области трубопрокатного производства и может быть использовано при изготовлении оправок станов продольной прокатки труб. .

Изобретение относится к области металлургии, в частности трубе и способу ее изготовления. .

Изобретение относится к области объемного упрочнения металлических изделий методами тренирующих механических воздействий. .
Изобретение относится к области термообработки полых изделий, в частности труб, работающих в агрессивных средах нефтяных месторождений. .

Изобретение относится к трубопрокатному производству, а именно к способу производства передельной трубной заготовки для прокатки холоднокатаных труб большого и среднего диаметров с повышенной точностью по стенке из сплавов на основе титана, и может быть использовано на станах продольной сварки, а как передельная трубная заготовка - на станах ХПТ 250 и ХПТ 450.
Изобретение относится к трубному производству, в частности к производству сварных прямошовных труб большого диаметра, и может быть использовано при производстве труб данного сортамента с последующей раскаткой сварного шва до уровня основного металла и термомеханической обработкой.

Изобретение относится к области термообработки, в частности для термоупрочнения труб с отдельного нагрева в линиях термоотделов или для термомеханической обработки труб с использованием тепла прокатного нагрева.

Изобретение относится к области трубопрокатного производства для термоупрочнения труб в линиях термоотделов и станов горячей прокатки. .

Изобретение относится к трубному производству, в частности для производства бурильных труб с приваренными соединительными замками. .
Изобретение относится к области металлургии, в частности к получению труб нефтяного сортамента из сталей, микролегированных сильными карбидо- и нитридообразующими элементами.

Изобретение относится к области металлургии, в частности к производству трубной заготовки диаметром от 80 до 180 мм. .

Изобретение относится к области металлургии, в частности к производству трубной заготовки диаметром от 80 до 180 мм. .

Изобретение относится к области металлургии, в частности к производству трубной заготовки диаметром от 80 до 160 мм, предназначенной для производства бесшовных труб различного назначения.

Изобретение относится к области металлургии, в частности к производству трубной заготовки диаметром от 80 до 180 мм, предназначенной для производства бесшовных труб различного назначения.
Изобретение относится к области металлургии, в частности к производству трубной заготовки диаметром от 80 до 180 мм. .

Изобретение относится к области металлургии, в частности к производству трубной заготовки диаметром от 80 до 180 мм. .

Изобретение относится к области металлургии, в частности к производству горячекатаной трубной заготовки диаметром от 80 до 180 мм. .

Изобретение относится к области металлургии, в частности к производству трубной заготовки диаметром от 80 до 180 мм. .

Изобретение относится к области металлургии, в частности к производству трубной заготовки диаметром от 80 до 180 мм. .
Наверх