Золоуловитель

Изобретение относится к золоуловителям и может быть использовано на тепловых электрических станциях. Золоуловитель содержит входной патрубок, корпус, выходной патрубок, бункер, оросительные и распылительные сопла, в качестве которых используются акустические форсунки для распыливания жидкости. Форсунки оросительного устройства выполнены акустическими, содержащими корпус с размещенным внутри генератором акустических колебаний в виде сопла и резонатора, и трубки для подвода распыливающего агента и жидкости, причем корпус выполнен в виде стакана с днищем, с размещенным внутри корпуса генератором акустических колебаний в виде полого стержня с клиновой щелью и соплом, при этом жидкость поступает к кольцевому зазору, выполненному между внешней поверхностью резонатора и внутренней поверхностью сопла, причем канал для подвода жидкости расположен тангенциально к внутренней поверхности стакана и выполнен в форме прямоугольной щели, при этом воздух подается через штуцер в корпусе и отверстие резонатора, а затем поступает, по крайней мере, в одну клиновую щель, расположенную под углом по отношению к оси резонатора, причем величина угла находится в оптимальном интервале величин: 30÷60°, а в кольцевом зазоре между внутренней поверхностью стакана и внешней поверхностью резонатора размещено винтовое направляющее устройство, способствующее созданию вихревого потока жидкости, поступающей по каналу. Изобретение позволяет повысить эффективность ресурсосбережения и очистки дымовых газов путем увеличения поверхности распыла за счет применения акустической форсунки. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к золоуловителям и может быть использовано на тепловых электрических станциях.

Наиболее близким техническим решением к заявляемому объекту является золоуловитель, содержащий входной патрубок, корпус, выходной патрубок, бункер, оросительные и распылительные сопла (см. а.с. СССР №856509, МПК B01D 47/00, 1981).

Недостатком золоуловителя является сравнительно невысокая степень ресурсосбережения и очистки дымовых газов.

Технический результат - повышение эффективности ресурсосбережения и очистки дымовых газов путем увеличения поверхности распыла за счет применения акустической форсунки.

Это достигается тем, что в золоуловителе, содержащем входной патрубок, корпус, выходной патрубок, бункер, оросительные и распылительные сопла, в качестве которых используются акустические форсунки для распыливания жидкости, форсунки оросительного устройства выполнены акустическими, содержащими корпус с размещенным внутри генератором акустических колебаний в виде сопла и резонатора, и трубки для подвода распыливающего агента и жидкости, причем корпус выполнен в виде стакана с днищем, с размещенным внутри корпуса генератором акустических колебаний в виде полого стержня с клиновой щелью и соплом, при этом жидкость поступает к кольцевому зазору, выполненному между внешней поверхностью резонатора и внутренней поверхностью сопла, причем канал для подвода жидкости расположен тангенциально к внутренней поверхности стакана и выполнен в форме прямоугольной щели, при этом воздух подается через штуцер в корпусе и отверстие резонатора, а затем поступает, по крайней мере, в одну клиновую щель, расположенную под углом по отношению к оси резонатора, причем величина угла находится в оптимальном интервале величин: 30÷60°, а в кольцевом зазоре между внутренней поверхностью стакана и внешней поверхностью резонатора размещено винтовое направляющее устройство, способствующее созданию вихревого потока жидкости, поступающей по каналу.

На фиг.1 изображен общий вид золоуловителя, на фиг.2 - вид сверху фиг.1, на фиг.3 - фронтальный разрез акустической форсунки для распыливания жидкости.

Золоуловитель (фиг.1, 2) содержит входной патрубок 1, корпус 2, выходной патрубок 3, бункер 4, оросительные 5 и распылительные 6 сопла, в качестве которых используются акустические форсунки для распыливания жидкости (фиг.3).

Оросительные 5 и распылительные 6 сопла выполнены в виде акустических форсунок (фиг.3) для распыливания жидкостей, каждая из которых содержит корпус 18, выполненный в виде стакана с днищем 19, с размещенным внутри корпуса генератором акустических колебаний в виде полого стержня 11 с клиновой щелью 12 и соплом 7. Жидкость поступает к кольцевому зазору, выполненному между внешней поверхностью резонатора 11 и внутренней поверхностью сопла 7, а затем в кольцевой зазор 8 между внутренней поверхностью корпуса 18 и внешней поверхностью стакана 21. После чего по каналу 22, выполненному в боковой стенке стакана 21, установленного соосно корпусу 18, жидкость поступает в кольцевой зазор между внутренней поверхностью стакана 21 и внешней поверхностью резонатора 11, причем канал 22 расположен тангенциально к внутренней поверхности стакана 21 и выполнен в форме прямоугольной щели.

Воздух подается через штуцер 13, расположенный соосно корпусу 18 форсунки, по трубке 9 с отверстием 14, отверстию 16, выполненному в клапане 15, соосно штуцеру 13, и отверстию 10 резонатора 11, а затем поступает, по крайней мере, в одну клиновую щель 12. Клиновая щель 12 расположена под углом по отношению к оси резонатора 11, причем величина угла находится в оптимальном интервале величин: 30÷60°. Клапан 15 взаимодействует с седлом 17, выполненным за одно целое с резонатором 11 и опирающимся на упругую прокладку 20, расположенную между торцевыми поверхностями стакана 21 и седла 17. В кольцевом зазоре между внутренней поверхностью стакана 21 и внешней поверхностью резонатора 11 размещено винтовое направляющее устройство 23, способствующее созданию вихревого потока жидкости, поступающей по каналу 22.

Для работы форсунки в оптимальном режиме предусмотрены следующие соотношения ее параметров:

отношение расстояния h2 от внешней поверхности днища 19 корпуса 18 до нижнего торца клапана 15 к расстоянию h от внешней поверхности днища 19 корпуса 18 до точки пересечения осей внутреннего отверстия 10 резонатора 11 с клиновой щелью 12 лежит в оптимальном интервале величин: h2/h=6÷10;

отношение расстояния h2 от внешней поверхности днища 19 корпуса 18 до нижнего торца клапана 15 к расстоянию h1 от внешней поверхности днища 19 корпуса 18 до оси канала 22 подвода жидкости лежит в оптимальном интервале величин: h2/h1=1,5÷3;

отношение диаметра d внутреннего отверстия 10 резонатора 11 к диаметру d4 внутренней поверхности корпуса 18 лежит в оптимальном интервале величин: d/d4=0,1÷0,3;

отношение диаметра d внутреннего отверстия 10 резонатора 11 к диаметру d1 внешней поверхности резонатора 11 лежит в оптимальном интервале величин: d/d1=0,3÷0,7;

отношение диаметра d2 сопла 7 к диаметру d1 внешней поверхности резонатора 11 лежит в оптимальном интервале величин: d2/d1=1,3÷1,7;

отношение диаметра d2 сопла 7 к расстоянию h1 от внешней поверхности днища 19 корпуса 18 до оси канала 22 подвода жидкости лежит в оптимальном интервале величин: d2/h1=3,5÷4,5;

отношение диаметра d внутреннего отверстия 10 резонатора 11 к расстоянию h от внешней поверхности днища 19 корпуса 18 до точки пересечения осей внутреннего отверстия 10 резонатора 11 с клиновой щелью 12 лежит в оптимальном интервале величин: d/h=0,3÷0,7.

Золоуловитель работает следующим образом.

В мокром золоуловителе (фиг.1, 2) отсепарированная за счет центробежных сил пыль оседает на пленке воды, стекающей по стенке аппарата, что уменьшает вторичный захват зольных частиц потока. Более высокая степень улавливания достигается при применении акустических форсунок в качестве оросительных 5 и распылительных 6 сопел, а также мокрых скрубберов с устройством для предварительного увлажнения газа (например, предварительно включенным аппаратом Вентури с распылительными соплами 6).

Акустическая форсунка для распыливания жидкостей работает следующим образом.

Распыливающий агент, например воздух, подается по отверстию 14 трубки 9, затем отверстию 16, выполненному в клапане 15, и отверстию 10 резонатора 11, после чего поступает, по крайней мере, в одну клиновую щель 12. Жидкость по каналу 22, выполненному в боковой стенке стакана 21, поступает в кольцевой зазор между внутренней поверхностью стакана 21 и внешней поверхностью резонатора 11. В результате прохождения резонатора 11 распыливающим агентом (например, воздухом) в последнем возникают пульсации давления, создающие акустические колебания, частота которых зависит от параметров резонатора. Акустические колебания распыливающего агента способствуют более тонкому распыливанию раствора, подаваемого в кольцевой зазор, при этом агент, ударяясь, создает звуковые колебания, воздействующие на струю жидкости. Указанная форсунка обеспечивает хорошее качество распыления при малых расходах воздуха. Опыты показали, что при давлении воздуха 100 кПа средний диаметр капель составляет 90 мкм, при увеличении давления воздуха примерно в 4 раза (до 400 кПа) средний диаметр капель уменьшается незначительно и составляет 87 мкм.

1. Золоуловитель, содержащий входной патрубок, корпус, выходной патрубок, бункер, оросительные и распылительные сопла, в качестве которых используются акустические форсунки для распыливания жидкости, отличающийся тем, что форсунки оросительного устройства выполнены акустическими, содержащими корпус с размещенным внутри генератором акустических колебаний в виде сопла и резонатора, и трубки для подвода распыливающего агента и жидкости, причем корпус выполнен в виде стакана с днищем, с размещенным внутри корпуса генератором акустических колебаний в виде полого стержня с клиновой щелью и соплом, при этом жидкость поступает к кольцевому зазору, выполненному между внешней поверхностью резонатора и внутренней поверхностью сопла, причем канал для подвода жидкости расположен тангенциально к внутренней поверхности стакана и выполнен в форме прямоугольной щели, при этом воздух подается через штуцер в корпусе и отверстие резонатора, а затем поступает, по крайней мере, в одну клиновую щель, расположенную под углом по отношению к оси резонатора, причем величина угла находится в оптимальном интервале величин 30÷60°, а в кольцевом зазоре между внутренней поверхностью стакана и внешней поверхностью резонатора размещено винтовое направляющее устройство, способствующее созданию вихревого потока жидкости, поступающей по каналу.

2. Золоуловитель по п.1, отличающийся тем, что отношение расстояния h2 от внешней поверхности днища корпуса акустической форсунки до нижнего торца ее клапана к расстоянию h от внешней поверхности днища корпуса до точки пересечения осей внутреннего отверстия резонатора с клиновой щелью лежит в оптимальном интервале величин h2/h=6÷10; отношение расстояния h2 от внешней поверхности днища корпуса до нижнего торца клапана к расстоянию h1 от внешней поверхности днища корпуса до оси канала подвода жидкости лежит в оптимальном интервале величин h2/h1=1,5÷3; отношение диаметра d внутреннего отверстия резонатора к диаметру d4 внутренней поверхности корпуса лежит в оптимальном интервале величин d/d4=0,1÷0,3; отношение диаметра d внутреннего отверстия резонатора к диаметру d1 внешней поверхности резонатора лежит в оптимальном интервале величин d/d1=0,3÷0,7; отношение диаметра d2 сопла к диаметру d1 внешней поверхности резонатора лежит в оптимальном интервале величин d2/d1=1,3÷1,7; отношение диаметра d2 сопла к расстоянию h1 от внешней поверхности днища корпуса до оси канала подвода жидкости лежит в оптимальном интервале величин d2/h1=3,5÷4,5; отношение диаметра d внутреннего отверстия резонатора к расстоянию h от внешней поверхности днища корпуса до точки пересечения осей внутреннего отверстия резонатора с клиновой щелью лежит в оптимальном интервале величин d/h=0,3÷0,7.



 

Похожие патенты:

Изобретение относится к энергетике и может быть использовано на котлах электростанций и отопительных котельных при сжигании угля с мокрой очисткой дымовых газов. .

Изобретение относится к котельному оборудованию, а именно к устройствам для отделения, улавливания, накопления и удаления твердых частиц из высокотемпературных потоков дымовых газов, проходящих через поверхности нагрева в конвективной шахте котла, отапливаемого высокозольными углями.

Изобретение относится к способу удаления отложений с внутренних и наружных поверхностей подводящих сопл или подводящих труб топочных установок, в которых из рециркулируемого отходящего газа, который снова подводят к топочной камере, оседают эти отложения, причем на отложения подают жидкую или парообразную среду.

Изобретение относится к теплоэнергетике , в частности к оборотным системам гидрозолоудаления, и м.б. .

Изобретение относится к способам очистки полых изделий и может быть использовано для очистки дымовой трубы от сажи. .

Изобретение относится к способу удаления аммиака и пыли из отходящего газа, возникающего при производстве удобрений, преимущественно мочевины. .

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов.

Изобретение относится к технике очистки газов от пыли и химических вредностей и может найти применение, например, на предприятиях черной металлургии. .

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов.

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов.

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов.

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов.

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов.

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов.

Изобретение относится к технике мокрого пылеулавливания

Изобретение относится к золоуловителям и может быть использовано на тепловых электрических станциях

Наверх