Способ обработки монокристаллических эпитаксиальных слоев нитридов iii-группы

Изобретение относится к полупроводниковой технологии для получения эпитаксиальных слоев нитридов III-группы. Сущность изобретения: в способе обработки монокристаллических эпитаксиальных слоев нитридов III-группы путем облучения быстрыми нейтронами с последующим нагревом, отжигом и охлаждением, облучению подвергают эпитаксиальные слои при плотности потока нейтронов не более 1012 см-2·с-1, флюенсом Φ=(0,5÷5,0)·1016 см-2; отжиг проводят при 800-900°С в течение 20 мин, нагрев ведут со скоростью 10-30 град/мин, охлаждение до температур 450-500°С ведут со скоростью 5-10 град/мин, а далее со скоростью 20-40 град/мин до комнатной температуры. Техническим результатом изобретения является улучшение электрофизических характеристик

эпитаксиальных слоев. 2 табл.

 

Изобретение может быть использовано в полупроводниковой технологии для получения эпитаксиальных слоев нитридов III-группы с улучшенными характеристиками для создания микроэлектронных и оптических устройств.

Получаемые в настоящее время эпитаксиальные слои нитридов III группы (Al, Ga, In)N достаточно низкого качества: высокая плотность дислокаций, низкие подвижности носителей заряда и др., что ограничивает возможность их использования для коротковолновой оптоэлектроники и высокочастотных электронных устройств высокой мощности.

Имеющийся в настоящее время подход, заключающийся в гетероэпитаксиальном выращивании нитридных эпитаксиальных слоев на инородных подложках, таких как сапфир, оказывает вредное влияние на качество конечного материала и функциональные способности устройства по ряду технологических причин: несоответствие кристаллической решетки слоя, обеспечивающего работу устройства, и подложки; несоответствие температурных коэффициентов расширения между слоем, обеспечивающим работу устройства, и подложкой и др.

Изготовление эпитаксиальных слоев нитридов III-группы (Al, Ga, In) N р-типа положительно влияет на производство биполярных устройств (например, светоизлучающих устройств, таких как светодиоды и лазерные диоды). Характеристики таких устройств и протекающие через них токи ограничены в значительной степени высоким сопротивлением электрического контакта с р-слоем устройства. Применение подложек р-типа дает возможность образования значительно более широких (10×) р-электродов и соответственного снижения сопротивления р-контакта. Рабочая температура и функциональные возможности лазерных диодов (Al, Ga, In) N на пластинках p-(Al,Ga,In)N с большей площадью р-контакта используются для значительного улучшения получаемого выхода по мощности и увеличения времени работы таких устройств.

Техническим результатом данного изобретения является улучшение электрофизических характеристик эпитаксиальных слоев нитридов III-группы путем облучения быстрыми нейтронами реактора с последующим нагревом, отжигом и охлаждением, облучению подвергают монокристаллические эпитаксиальные слои нитридов III-группы, полученные разными способами выращивания из газовой фазы при плотности потока нейтронов не более 1012 см-2с-1 флюенсом Φ=(0,5÷5,0)·1016 см-2. Отжиг облученных образцов проводят при температуре 800÷900°С в течение 20 мин, нагрев ведут со скоростью 10÷30 град/мин, охлаждение до температур 450÷500°С ведут со скоростью 5÷10 град/мин, а далее со скоростью 20÷40 град/мин до комнатной температуры.

Облучение быстрыми нейтронами приводит к образованию в материале точечных радиационных дефектов (вакансия и межузельный атом), а также сложных радиационных дефектов, так называемых областей разупорядочения (РО). В процессе образования областей разупорядочения в их состав гетерируется часть мелких ростовых дефектов, присутствующих в исходном материале. Последующий отжиг в указанном в формуле интервале температур приводит к распаду сложных радиационных дефектов с последующей аннигиляцией мелких дефектов на стоки. Таким образом, матрица основного вещества очищается от части ростовых дефектов, тем самым способствуя улучшению электрофизических характеристик материала [1-4].

Данное изобретение относится ко всему классу нитридных соединений (Al, Ga, In) N, используется в широком смысле и включает соответственно нитриды отдельных элементов Al, Ga и In (AlN, GaN, InN), тройные (AlGaN, GaInN, AlInN) и четверное соединение (AlGalnN) таких элементов. Если присутствуют две или более разновидности компонента (Ga, Al, In), то в широком смысле данного изобретения могут использоваться все возможные составы, включая стехиометрические соотношения, а также «нестехиометрические» соотношения присутствующих в составе компонентов.

Пример 1

Монокристаллический эпитаксиальный слой нелегированного нитрида галлия толщиной 150 мкм и диаметром 50 мм, выращенный на сапфировой подложке методом хлорид-гидридной эпитаксии из газовой фазы с концентрацией носителей заряда n=2×1014 см-3 и подвижностью µ=350 см2 В-1 с-1, облучают быстрыми реакторными нейтронами с энергией Е>0,1 МэВ с плотностью потока нейтронов φ=1×1012 см-2с-1, флюенсом Φ=5×1015 см-2, выдерживают для спада наведенной радиоактивности до уровня естественного фона. Облученные образцы отжигают при температуре 800°С в течение 20 мин. Нагрев ведут со скоростью 10 град/мин, охлаждение до температуры 500°С ведут со скоростью 5 град/мин, а далее со скоростью 20 град/мин до комнатной температуры. Получены следующие электрофизические характеристики материала: концентрация носителей заряда n=2×1014см-3, подвижность носителей заряда µ=550 см2В-1с-1.

Пример 2

Монокристаллический эпитаксиальный слой нелегированного нитрида галлия толщиной 150 мкм и диаметром 50 мм, выращенный на сапфировой подложке методом хлорид-гидридной эпитаксии из газовой фазы с концентрацией носителей заряда n=2×1014 см-3 и подвижностью

µ=350 см2В-1с-1, облучают быстрыми реакторными нейтронами с энергией Е>0,1 МэВ с плотностью потока нейтронов φ=1×1012 см-2с-1, флюенсом Φ=5×1016 см-2, выдерживают для спада наведенной радиоактивности до уровня естественного фона. Облученные образцы отжигают при температуре 900°С в течение 20 мин. Нагрев ведут со скоростью 30 град/мин, охлаждение до температуры 500°С ведут со скоростью 10 град/мин, а далее со скоростью 40 град/мин до комнатной температуры. Получены следующие электрофизические характеристики материала: концентрация носителей заряда n=2×1014 см-3, подвижность носителей заряда µ=600 см2В-1с-1.

Пример 3

Монокристаллический эпитаксиальный слой нелегированного нитрида галлия толщиной 150 мкм и диаметром 50 мм, выращенный на сапфировой подложке методом хлорид-гидридной эпитаксии из газовой фазы с концентрацией носителей заряда n=2×1014 см-3 и подвижностью µ=350 см2 В-1с-1, облучают быстрыми реакторными нейтронами с энергией Е>0,1 МэВ с плотностью потока нейтронов φ=1×1012 см-2с-1, флюенсом Φ=1×1015 см-2, выдерживают для спада наведенной радиоактивности до уровня естественного фона. Облученные образцы отжигают при температуре 800°С в течение 20 мин. Нагрев ведут со скоростью 10 град/мин, охлаждение до температуры 500°С ведут со скоростью 10 град/мин, а далее со скоростью 20 град/мин до комнатной температуры. Получены следующие электрофизические характеристики материала: концентрация носителей заряда

n=2×1014 см-3, подвижность носителей заряда µ=50 см2В-1с-1.

Пример 4

Монокристаллический эпитаксиальный слой нелегированного нитрида галлия толщиной 150 мкм и диаметром 50 мм, выращенный на сапфировой подложке методом хлорид-гидридной эпитаксии из газовой фазы с концентрацией носителей заряда n=2×1014 см-3 и подвижностью

µ=350 см2В-1с-1, облучают быстрыми реакторными нейтронами с энергией Е>0,1 МэВ с плотностью потока нейтронов φ=1×1012 см-2с-1, флюенсом Φ=1×1017 см-2, выдерживают для спада наведенной радиоактивности до уровня естественного фона. Облученные образцы отжигают при температуре 900°С в течение 20 мин. Нагрев ведут со скоростью 30 град/мин, охлаждение до температуры 500°С ведут со скоростью 10 град/мин, а далее со скоростью 40 град/мин до комнатной температуры. Получены следующие электрофизические характеристики материала: концентрация носителей заряда

n=2×1014 см-3, подвижность носителей заряда µ=40 см2 В-1с-1.

В таблицах 1, 2 приведены примеры, характеризующие влияние облучения, температуры последующего отжига, скоростей нагрева и охлаждения на электрофизические параметры материалов GaN и InN, подтверждающие формулу изобретения.

По сравнению с базовым объектом предложенный способ позволяет получить материал с улучшенными электрофизическими характеристиками: на 40÷85% повысилась подвижность носителей заряда.

Источники информации

1. A.Y.Polyakov, N.B.Smirnov, A.V.Govorkov, A.V.Markov, S.J.Pearton, N.G.Kolin, D.I.Merkurisov, V.M.Boiko. Neutron irradiation effects on electrical properties and deep-level spectra in undoped n-AlGaN/GaN heterostructures. J. Appl.Phys.98,033529 (2005).

2. A.Y.Polyakov, N.B., Smirnov, A.V.Govorkov, A.V.Markov, N.G.Kolin, D.I.Merkurisov, V.M.Boiko, S.J.Pearton. Neutron irradiation effects in undoped n-AlGaN. J.Vac. Sci. Technol. В 243, May/Jun 2006, 1094-1097.

3. A.Y.Polyakov, N.B., Smirnov, A.V.Govorkov, A.V.Markov, N.G.Kolin, D.I.Merkurisov, V.M.Boiko, S.J.Pearton. Neutron irradiation effects on electrical properties and deep-level spectra in undoped n-AlGaN/GaN heterostructures. Journal of applied physics 98, 033529, 2005.

4. Водоу Роберт П. (US); Флинн Джеффри С.(US); Брандз Джордж P. (US); Редуинг Джоан М. (US); Тишлер Майкл А. (US). Буля нитрида элемента III-V групп для подложек и способ ее изготовления и применения. WO 01/68955 (20.09.2001).

Способ обработки монокристаллических эпитаксиальных слоев нитридов III-группы путем облучения быстрыми нейтронами с последующим нагревом, отжигом и охлаждением, отличающийся тем, что облучению подвергают эпитаксиальные слои при плотности потока нейтронов не более 1012 см-2 с-1, флюенсом Φ=(0,5÷5,0)·1016 см-2; отжиг проводят при 800-900°С в течение 20 мин, нагрев ведут со скоростью 10-30 град/мин, охлаждение до температур 450-500°С ведут со скоростью 5-10 град/мин, а далее со скоростью 20-40 град/мин до комнатной температуры.



 

Похожие патенты:
Изобретение относится к технологии полупроводниковых соединений. .
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления радиационно-стойких приборов. .

Изобретение относится к области электронной техники и может быть использовано при изготовлении приборов на основе арсенида галлия. .

Изобретение относится к области электронной техники и может быть использовано при изготовлении приборов на основе арсенида галлия. .

Изобретение относится к области электронной техники и может быть использовано при изготовлении полупроводниковых приборов на основе арсенида галлия. .
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии снижения механических напряжений полупроводниковых приборов и интегральных схем.

Изобретение относится к технологии изготовления полупроводниковых приборов и может быть использовано в производстве мощных высокотемпературных кремниевых резисторов, имеющих высокую температурную стабильность сопротивления в широком интервале рабочих температур.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии повышения выходной мощности лавинно-пролетных диодов.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления транзисторов со структурой кремний-на-диэлектрике.

Изобретение относится к методам создания объемных структур путем изменения по заданному рисунку свойств вещества исходной заготовки в обрабатываемых участках и может найти применение в микроэлектронике при изготовлении интегральных схем различного назначения, средств хранения информации и т.п.

Изобретение относится к технологии мощных полупроводниковых приборов
Изобретение относится к методам создания объемных композиционных структур путем изменения по заданному рисунку свойств вещества исходной заготовки и может найти применение в микроэлектронике при изготовлении интегральных схем различного назначения, средств хранения информации

Изобретение относится к конструированию и технологии изготовления силовых полупроводниковых приборов и может быть использовано в производстве мощных кремниевых резисторов таблеточного исполнения, в частности резисторов-шунтов, характеризующихся низким значением номинального сопротивления 0,2÷1 мОм с пониженной температурной зависимостью сопротивления в рабочем интервале температур
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур с пониженной плотностью дефектов

Изобретение относится к технологии создания сложных проводящих структур с помощью потока ускоренных частиц и может быть использовано в нанотехнологиях, микроэлектронике для создания сверхминиатюрных приборов, интегральных схем и запоминающих устройств

Изобретение относится к технологии изготовления полупроводниковых приборов и может быть использовано в производстве мощных кремниевых резисторов, имеющих высокую температурную стабильность сопротивления в широком интервале рабочих температур

Изобретение относится к технологии создания сложных проводящих структур и может быть использовано в нанотехнологии

Изобретение относится к области машиностроения и может быть использовано в космических технологиях, авиастроении, автомобилестроении, станкостроении, технологиях создания строительных материалов и конструкций, в области трубопроводного транспорта и в технологии создания полупроводниковых приборов. Технический результат - модификация поверхностей металлов и полупроводниковых гетероэпитаксиальных структур (ГЭС), упрочнение металлических деталей и конструкций со сложной формой поверхности, модификация морфологических и электрофизических свойств полупроводниковых ГЭС. В способе модификации поверхности металлов или гетерогенных структур полупроводников путем воздействия на них энергии ионизирующего излучения в структуру детали или конструкции из этих материалов вводят диэлектрический слой, облучают источником импульсного рентгеновского излучения (РИ), а для определения положительного эффекта используют результаты сравнения измерений микротвердости, оптических свойств или исследования морфологии поверхности до и после воздействия ионизирующего излучения и изотермического отжига полупроводниковых ГЭС. 4 з.п. ф-лы, 14 ил.

Изобретение относится к технологии нейтронно-трансмутационного легирования (НТЛ) кремния тепловыми нейтронами, широко применяемого в технологии изготовления приборов электронной и электротехнической промышленности. Способ нейтронного легирования вещества включает замедление быстрых нейтронов источника веществом замедлителя, формирование потока тепловых нейтронов в выделенную область и облучение тепловыми нейтронами легируемого вещества, при этом быстрые нейтроны источника в процессе замедления сепарируют по углам их распространения, выделяют их потоки, двигающиеся в выделенном структурой вещества замедлителя направлении, суммируют выделенные структурой потоки, формируют в виде узкой полосы и направляют на легируемое вещество, которое управляемо перемещают в области фокуса потоков нейтронов. Техническим результатом изобретения является рост производительности процесса легирования и формирование областей с повышенной степенью легирования в заданных участках легируемого вещества. 2 н. и 3 з.п.ф-лы, 3 ил., 3 пр.
Наверх