Способ получения игольчатых оксидных вольфрамовых бронз


C25B1/14 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2354753:

Институт высокотемпературной электрохимии Уральского отделения Российской Академии Наук (RU)

Изобретение относится к области высокотемпературной электрохимии, в частности к способу получение электролизом игольчатых оксидных вольфрамовых бронз, и может быть использовано в медицине, электротехнике, радиотехнике и в химической промышленности для изготовления ион-селективных элементов для анализа микросред, электрохромных устройств, холодных катодов, катализаторов химических реакций. Техническим результатом изобретения является получение игольчатых наноструктур оксидных вольфрамовых бронз. Способ ведут электролизом в расплаве с использованием платиновых анода и катода. Электролиз осуществляют в импульсном потенциостатическом режиме при перенапряжении 170-300 мВ. При этом расплав содержит 30 мол.% K2WO4, 25 мол.% Li2WO4 и 45 мол.% WO3.

 

Изобретение относится к области высокотемпературной электрохимии, в частности к получению электролизом игольчатых наноструктур оксидных вольфрамовых бронз, и может быть использовано в медицине, электротехнике, радиотехнике и в химической промышленности для изготовления ион-селективных элементов для анализа микросред, электрохромных устройств, холодных катодов, катализаторов химических реакций.

В настоящее время к наноматериалам условно относят дисперсные и массивные материалы, содержащие структурные элементы (зерна, кристаллиты, блоки, кластеры), геометрические размеры которых хотя бы в одном измерении не превышают 100 нм и обладающие качественно новыми свойствами, функциональными и эксплуатационными характеристиками (А.Г.Колмаков, М.И.Алымов. Особенности свойств наноматериалов и основные направления их использования. // Перспективные материалы. 2006, №5, с.5-13).

Следует отметить, что на коммерческом рынке в настоящее время наиболее широко представлены такие наноматериалы, как нанопорошки металлов и сплавов, нанопорошки оксидов, нанопорошки ряда карбидов, углеродные нановолокна, фулереновые материалы.

Существуют разные способы получения наноматериалов: газофазной эпитаксии, молекулярно-пучковой эпитаксии, импульсного лазерного осаждения, вакуумного осаждения, твердофазный, электрического взрыва, золь-гель метод, электрохимический и др.

Известен электрохимический способ получения нанокристаллических осадков простых веществ, а именно золота (Chien-Jung Huang, Pin-Hsiang Chiu, Yeong-Her Wang, Wen Ray Chen, Teen Hang Meen. Synthesis of gold nanocubes by electrochemical technique. Journal of the Electrochemical Society, 153 (8) D129-D133 (2006)).

В этой работе золотые нанокубики формировались на катоде двухэлектродной ячейки. В качестве анода использовалась золотая пластинка, а в качестве катода - платиновая. Эти две пластинки располагались вертикально и параллельно друг другу. Электроды помещались в водный раствор и подключались к источнику питания. Температура электролиза поддерживалась постоянной 36°С. Ток, пропускаемый через ячейку, составлял 5 мА.

Этот способ позволяет получать нанокристаллические осадки золота. Размер отдельных нанокубиков составляет 30 нм.

Однако этим способом невозможно получить игольчатые наноструктуры оксидных вольфрамовых бронз.

Интерес к этому классу соединений обусловлен широким спектром проявляющихся у них ценных качеств. К ним относятся высокая коррозионная стойкость, зависящая от состава бронз разная природа электропроводности, селективность к определенным сортам катионов в водных растворах, значительный диапазон изменения цвета и т.д.

Известно, что оксидные бронзы могут использоваться в качестве ион-селективных элементов, электрохромных устройств, холодных катодов, катализаторов химических реакций.

Общим в заявляемом решении и данном аналоге является то, что получают наноматериал электрохимическим методом.

Наиболее близким к заявляемому решению (прототипом) является способ получения осадков оксидных вольфрамовых бронз в форме игл («Электролит для осаждения натрий-вольфрамовых бронз», авторское свидетельство СССР №1420079, МКИ C25D 3/66, С25В 1/00, опубл. 30.08.88 г., Бюл. №32).

Способ заключается в том, что электролиз ведут в поливольфраматном расплаве при температуре 700°С и плотности тока на платиновом катоде 0.5 А/см2. В течение 3-60 секунд формируются дендриты натрий вольфрамовой бронзы в форме игл размером 500-3000 мкм. При электрохимическом осаждении из расплава, содержащего диоксид циркония, ингибируется рост боковых ветвей дендритов и образуются осадки в виде игл.

Недостатком прототипа является то, что способ не позволяет получить нанокристаллы оксидных вольфрамовых бронз.

Общими признаками известного и заявляемого способов является то, что способ осуществляют путем электролиза поливольфраматного расплава с использованием платиновых анода и катода.

Заявляемый способ отличается от известного тем, что электролиз ведут в импульсном потенциостатическом режиме в расплаве, содержащем 30 мол.% K2WO4, 25 мол.% Li2WO4 и 45 мол.% WO3.

Технической задачей изобретения является разработка способа получения игольчатых наноструктур оксидных вольфрамовых бронз.

Поставленная задача решается за счет того, что в известном способе получения игольчатых оксидных вольфрамовых бронз путем электролиза поливольфраматного расплава с использованием платиновых анода и катода электролиз ведут в импульсном потенциостатическом режиме в расплаве, содержащем 30 мол.% K2WO4, 25 мол.% Li2WO4 и 45 мол.% WO3.

Осаждение кристаллов происходит на плоских торцах электродов из платиновой проволоки, которая была первоначально под вакуумом вплавлена в тугоплавкое стекло. В ходе электролиза поддерживалась температура 700°С. Платиновая проволока использовалась в качестве анода, а в качестве электрода сравнения - платиновая фольга площадью 1 см2, полупогруженная в расплав.

Равновесный потенциал бронзы в расплаве при температуре 700°С составляет 760 мВ относительно платина-кислородного электрода сравнения. Импульс перенапряжения постоянной величины подавался на ячейку. Величина перенапряжения лежит в интервале 170-300 мВ. При этих параметрах импульса на катоде растут игольчатые кристаллы вольфрамовых бронз.

При величине перенапряжения менее 170 мВ на катоде осаждаются кристаллы в виде призм, имеющих в несколько раз большую толщину по сравнению с иглами. При перенапряжении более 300 мВ кристаллы имеют скелетные формы.

Изобретение может быть проиллюстрировано следующими примерами.

Пример 1. Бронзы получают электролизом расплава 0.30 K2WO4 - 0.25 Li2WO4 - 0.45 WO3 с использованием платиновых анода и катода. На ячейку подают импульс перенапряжения величиной 150 мВ. При этом на катоде формируется осадок в виде шестигранных призм.

Пример 2. Бронзы получают электролизом расплава 0.30 K2WO4 - 0.25 Li2WO4 - 0.45 WO3 с использованием платиновых анода и катода. На ячейку подают импульс перенапряжения величиной 170 мВ. При этом на катоде формируется осадок в виде тонких игл, толщина которых составляет порядка 100 нм.

Пример 3. Бронзы получают электролизом расплава 0.30 K2WO4 - 0.25 Li2WO4 - 0.45 WO3 с использованием платиновых анода и катода. На ячейку подают импульс перенапряжения величиной 300 мВ. При этом на катоде формируется осадок в виде тонких игл, толщина которых составляет 20-30 нм.

Пример 4. Бронзы получают электролизом расплава 0.30 K2WO4 - 0.25 Li2WO4 - 0.45 WO3 с использованием платиновых анода и катода. На ячейку подают импульс перенапряжения величиной 310 мВ. При этом на катоде формируется осадок в виде скелетных форм.

Все осадки исследовались на электронном микроскопе, а также рентгеновским и химическим методами. Эти исследования показали, что на катоде в расплаве 0.30 K2WO4 - 0.25 Li2WO4 - 0.45 WO3 осаждаются игольчатые осадки гексагональной вольфрамовой бронзы общей формулы KxLiyWO3 (X=0.32; Y=0.05). Эти бронзы являются изоструктурными гексагональной бронзе состава K0.33WO3. Параметры решетки А=7.3787±0.0005 Å; С=7.5239±0.0009 Å. Толщина игл составляла порядка 100 нм, а при высоких значениях перенапряжения - в несколько раз меньше. Интересно, что иглы наноразмеров не имели огранки, которая проявлялась лишь в процессе их роста. При этом боковые грани такой иглы огранялись плоскостями типа {1010}, а верхнее основание плоскостью {0001}.

Сопоставление с прототипом показывает, что в результате проведения процесса электролиза возможно получение игольчатых осадков оксидных вольфрамовых бронз и без введения в расплав ингибирующей добавки.

Таким образом, приведенные данные подтверждают, что совокупность заявленных признаков способа обеспечивает получение игольчатых наноструктур оксидных вольфрамовых бронз с толщиной игл меньше 100 нм.

Способ получения игольчатых наноструктур оксидных вольфрамовых бронз электролизом в расплаве с использованием платиновых анода и катода, характеризующийся тем, что электролиз ведут в импульсном потенциостатическом режиме при перенапряжении 170-300 мВ в расплаве, содержащем 30 мол.% K2WO4, 25 мол.% Li2WO4 и 45 мол.% WO3.



 

Похожие патенты:

Изобретение относится к области физической и коллоидной химии водных растворов. .

Изобретение относится к электрохимическому способу окисления первичных и вторичных спиртов до соответствующих карбонильных соединений, включающему приготовление исходного раствора при комнатной температуре.

Изобретение относится к координационной химии, именно к улучшенному способу получения гетерометаллического малата неодима (III) и железа (III) формулы 1, используемого для синтеза смешанных оксидов со структурой перовскита.
Изобретение относится к материаловедению, а именно к методам получения монокристаллов для кристаллографии, оптики и электроники. .

Изобретение относится к процессам электрохимического получения различных химических продуктов путем электролиза растворов электролитов различной концентрации. .

Изобретение относится к способу и устройству для преобразования энергии с использованием водородно-кислородной смеси, или газа Брауна. .
Изобретение относится к новому рутениевосульфидному катализатору и к объединенным с ним газодиффузионным электродам для восстановления кислорода в промышленных электролизерах.
Изобретение относится к новому рутениевосульфидному катализатору и к объединенным с ним газодиффузионным электродам для восстановления кислорода в промышленных электролизерах.

Изобретение относится к химическому оборудованию и предназначено для выравнивания давлений газов в электролизерах. .

Изобретение относится к химическому оборудованию и предназначено для выравнивания давлений газов в электролизерах. .
Изобретение относится к технологии получения легколетучих высших фторидов тугоплавких металлов VI группы Периодической таблицы Д.И.Менделеева, используемых для получения металла в виде покрытий, порошков и компактных изделий методом газофторидной металлургии при восстановлении соответствующих гексафторидов водородом в газовой фазе или на металлических подложках.
Изобретение относится к гидрометаллургии и может быть использовано при переработке отходов производства монокристаллов соединений тугоплавких металлов, в частности вольфрамата свинца PbW04, с получением высокочистых соединений вольфрама и свинца, пригодных для повторного выращивания монокристаллов.

Изобретение относится к получению оксидных натрий-вольфрамовых бронз химическим способом. .

Изобретение относится к способам получения гексафторида вольфрама из металлического вольфрама и может быть использовано во фторидной металлургии вольфрама. .

Изобретение относится к способам получения гексафторида вольфрама из металлического вольфрама и может быть использовано во фторидной металлургии вольфрама. .
Изобретение относится к способам очистки гексафторида вольфрама с целью получения гексафторида вольфрама, пригодного по чистоте для применения его в микроэлектронике и материаловедении, когда предельно допустимое содержание примесей регламентируется величинами менее 10-2%.

Изобретение относится к гидрометаллургии редких металлов и может быть использовано при переработке вольфрамитовых концентратов. .

Изобретение относится к области твердофазного синтеза высокочистого поликристаллического вольфрамата свинца PbWO4 и может найти применение при выращивании монокристаллов вольфрамата свинца.

Изобретение относится к химико-термической обработке металлических изделий, а именно к созданию наноструктурированных материалов конструкционного назначения. .
Наверх