Электроизоляционный заливочный компаунд

Изобретение относится к области электротехники, в частности к эпоксидным электроизоляционным заливочным компаундам горячего отверждения, предназначенным для электроизоляции и упрочнения узлов и блоков высоковольтных устройств, дросселей, металлонагруженных трансформаторов, для герметизации и защиты элементов радиоэлектронной аппаратуры от влаги и механических воздействий. Техническим результатом изобретения является создание электроизоляционного заливочного компаунда с высокими значениями удельного объемного электрического сопротивления, низкими показателями тангенса угла диэлектрических потерь и небольшого температурного коэффициента линейного расширения (ТКЛР). Композиция для электроизоляционного заливочного компаунда содержит в мас.ч.: эпоксидную диановую смолу - 60-70, триглицидиловый эфир триметилолпропана - 15-20, моноглицидиловый эфир алкилфенола - 10-20, изометилтетрагидрофталевый ангидрид - 90-95, 2,4,6 трис(диметиламинометил)фенол 0,8-1,0, кварц молотый - 400-500. Благодаря небольшому коэффициенту температурного линейного расширения, высокому объемному электрическому сопротивлению и механической прочности предлагаемый компаунд рекомендуется использовать для высоковольтных устройств, содержащих разнородные материалы. 1 табл.

 

Изобретение относится к эпоксидным электроизоляционным заливочным компаундам горячего отверждения, предназначенным для электроизоляции и упрочнения узлов и блоков высоковольтных устройств, дросселей, металлонагруженных трансформаторов, для герметизации и защиты элементов радиоэлектронной аппаратуры от влаги и механических воздействий.

Известен эпоксидный компаунд ЭПК-1 на основе эпоксиднодиановой смолы ЭД-20, малеинового ангидрида и ускорителя диметиланилина, применяемый для пропитки обмоток трансформаторов, дросселей (ОСТ 92-1006-77) с высокими электроизоляционными характеристиками при температуре 20°С: удельным объемным электрическим сопротивлением 1,9·1013 Ом·м; тангенсом угла диэлектрических потерь 0,15; электрической прочностью не менее 18 кВ/мм, но с большим коэффициентом температурного линейного расширения (ТКЛР) (55-60)·10-6 1/град С. Компаунды с высокими значениями ТКЛР способны разрушаться под действием внутренних напряжений, возникающих вследствие ограничения жесткими конструкциями термических и усадочных деформаций компаунда под действием термоциклирования в процессе работы. Эти напряжения действуют в течение длительного времени на залитых изделиях не в момент изготовления, а в процессе эксплуатации [1, с.156].

Следовательно, для электроизоляции высоковольтных блоков металлонагруженных трансформаторов для исключения напряжений из-за разных ТКЛР металлов и компаунда последний должен иметь минимальное температурное расширение. Для этого в состав компаундов вводят значительное количество минеральных наполнителей с небольшим значением ТКЛР. В частности, электроизоляционный материал, наиболее близкий к предлагаемому изобретению, по патенту России 2046413, кл. Н01В 3/16, опубл. 20.10.95, включающий эпоксидиановую смолу, отвердитель ангидридного типа и большое количество минерального наполнителя - окиси алюминия, имеет значение ТКЛР в интервале температур -40 ÷ +40°С=(25,8÷36)·10-6 1/град. Недостатками этого компаунда являются недостаточно низкое значение ТКЛР как в интервале температур -40 ÷ +40°С, так и в широком температурном интервале от -60 до +120°С, невысокие значения удельного объемного сопротивления, большое значение тангенса угла диэлектрических потерь. Снижение последнего показателя приводит к уменьшению потерь полезной энергии и, соответственно, к уменьшению перегрева конструкций и аппаратуры, залитых компаундом.

Задачей изобретения является создание электроизоляционного компаунда с высокими значениями удельного объемного электрического сопротивления, низкими показателями тангенса угла диэлектрических потерь и температурного коэффициента линейного расширения при температурах от -60 до +120°С.

Технический результат - существенное улучшение технологических свойств и улучшение условий труда.

Поставленная задача достигается тем, что электроизоляционный заливочный компаунд, включающий эпоксидиановую смолу, отвердитель ангидридного типа, олигоэфир, ускоритель и минеральный наполнитель, в качестве олигоэфира содержит два олигоэфира с эпоксидными группами: триглицидиловый эфир триметилолпропана и моноглицидиловый эфир алкилфенола, в качестве отвердителя содержит изометилтетрагидрофталевый ангидрид, в качестве ускорителя - 2,4,6 трис(диметиламинометилфенол, в качестве минерального наполнителя - кварц молотый, при следующем соотношении компонентов, мас.ч.:

эпоксидная диановая смола 60-70
триглицидиловый эфир триметилолпропана 15-20
моноглицидиловый эфир алкилфенола 10-20
изометилтетрагидрофталевый ангидрид 90-95
2,4,6 трис(диметиламинометил)фенол 0,8-1,0
кварц молотый 400-500

Композиции для предлагаемого компаунда готовили следующим образом. В качестве эпоксидного связующего применяли смесь эпоксидной диановой смолы ЭД-20 или ЭД-22 (ГОСТ 10587-93), олигоэфирэпоксидов: марки Лапроксид ТМП - триглицидилового эфира триметилолпропана, и марки Лапроксид АФ - моноглицидилового эфира алкилфенола, выпускаемых ООО «НПП «Макромер» по техническим требованиям [2]. В качестве отвердителя использовали изометилтетрагидрофталевый ангидрид (изо-МТГФА) марки А (ТУ 2418-399-05842324-2004) с добавкой ускорителя - 2,4,6 трис(диметиламинометил) фенола марки Алкофен МА по ТУ 6-22-362-96 или продукта УП-606/2 по ТУ У 6-00209817.035-96. Композицию наполняли порошками кварца молотого марки КП или маршаллита.

Для экспериментального определения характеристик предлагаемого компаунда готовили 4 состава (см. таблицу) по следующей технологии. В фарфоровой чашке смешивали навески эпоксидиановой смолы, Лапроксида ТМП, Лапроксида АФ, добавляли просушенный наполнитель кварц молотый марки КП или маршаллит, тщательно перемешивали, выдерживали при температуре 60°С в течение 20 минут, вакуумировали в термошкафу в течение 10 минут. Затем в горячую смесь добавляли навеску отвердителя изо-МТГФА и ускорителя - УП-606/2, все тщательно перемешивали в течение 10 минут, вакуумировали при остаточном давлении не более 20 мм рт.ст. в термошкафу в течение 10 минут, заливали в формы, обработанные смазкой, для получения образцов для испытаний. Образцы в формах отверждали в термошкафу по следующему режиму: выдержка при 60°С 0,5 ч, 70°С 0,5 ч, 80°С 0,5 ч и при 120°С 6,5 ч. После окончания режима отверждения термошкаф отключали, накрывали асбестовым одеялом для обеспечения режима медленного сброса температуры. Образцы испытывали через сутки после их полного остывания в термошкафу.

На образцах-дисках из отвержденного заливочного компаунда определяли удельное объемное электрическое сопротивление (ρv) в соответствии с ГОСТ 6433.2-71.

Тангенс угла диэлектрических потерь (tgδ) определяли по ГОСТ 22372-77 при частоте 106 Гц на тех же образцах-дисках.

Определение показателя коэффициента температурного линейного расширения (ТКЛР) проводили по ОСТ 3-2342-89 на брусках из отвержденного компаунда размерами 10×10×100 мм в диапазонах температур: -40÷+40°С; -60÷+20°С; 20÷120°С.

Составы и результаты испытаний 4 рецептур предлагаемого компаунда и прототипа представлены в таблице. Значение ТКЛР прототипа в интервале температур -60 ÷ +20°C оценивали расчетным путем.

Из данных, представленных в таблице, видно достижение положительного технического результата, так как предлагаемый компаунд:

- в 8-10 раз превосходит прототип по удельному объемному электрическому сопротивлению;

- имеет более чем в 2 раза меньшее значение тангенса угла диэлектрических потерь;

- имеет меньшие значения коэффициента температурного линейного расширения, чем прототип, в интервалах температур -40÷+40°С и -60÷+20°С.

Перечисленные преимущества компаунда по предлагаемому изобретению в сочетании с его высокой механической прочностью на растяжение (65,0-67,5 МПа) и на сжатие (до 120,0 МПа) позволяют рекомендовать его для электроизоляции путем заливки высоковольтных устройств, содержащих разнородные материалы: металлосодержащих трансформаторов, дросселей. Предлагаемый компаунд с небольшим значением ТКЛР в широком температурном интервале от -60 до +120°С целесообразно использовать для повышения стойкости высоковольтных устройств, содержащих пьезокерамику, к высокоимпульсным нагрузкам.

Литература

1. Потапочкина И.И., Короткова Н.П., Тарасов В.Н., Лебедев B.C. Модификаторы эпоксидных смол производства НПП «Макромер».//Клеи. Герметики. Технологии. - 2006 - №7. - С.14-17.

2. Чернин И.З., Смехов Ф.М., Жердев Ю.В. Эпоксидные полимеры и композиции. М.: Химия, 1982.

Составы и свойства предлагаемого компаунда и прототипа
Примеры Состав, мас.ч. Удельное объемное электрическое сопротивление ρv, Ом·м, при (20÷5)°С Тангенс угла диэлектрических потерь при частоте 106 Гц при (20÷5)°С ТКЛР, 10-6, град-1 в интервале температур
-40 ÷ +40°С - 60 ÷ +20°С 20 ÷ +120°С
1 ЭД-22-60; Лапроксид ТМП-20; Лапроксид АФ-20; изо-МТГФА-92; УП-606/2-1,0; кварц-500 5.0·1013 0.0059 24 26 47
2 ЭД-22-70; Лапроксид ТМП-18; Лапроксид АФ-12; изо-МТГФА-95; УП-606/2-0,9; кварц-450 6,0·1013 0,0075 25 27 25
3 ЭД-20-70; Лапроксид ТМП-20; Лапроксид АФ-10, изо-МТГФА-93; УП-606/2-1,0; кварц-400 3,0·1013 0,0080 24 26 38
4 ЭД-20-70; Лапроксид ТМП-15; Лапроксид АФ-15; изо-МТГФА-90; УП-606/2-0,8; кварц-500 8,0·1013 0,0070 23 25 37
Прото -тип Эпоксидная диановая смола - 15,44÷18,60; Олигоэфиракрилат МГФ-9 - 5,15÷8,36; Ангидрид малеиновой кислоты - 7,25÷8,74; Диметиланилин - 0,15÷0,20; Оксид алюминия - остальное (2÷5)·1012 0,16÷0,18 25,8÷36 По расчету 28÷39 -

Электроизоляционный заливочный компаунд, включающий эпоксидиановую смолу, олигоэфир, отвердитель ангидридного типа, ускоритель и минеральный наполнитель, отличающийся тем, что содержит два олигоэфира: триглицидиловый эфир триметилолпропана и моноглицидиловый эфир алкилфенола, в качестве ангидридного отвердителя изометилтетрагидрофталевый ангидрид, в качестве ускорителя 2,4,6-трис(диметиламинометил)фенол, в качестве минерального наполнителя - кварц молотый при следующем соотношении компонентов, мас.ч.:

эпоксидная диановая смола 60-70
триглицидиловый эфир триметилолпропана 15-20
моноглицидиловый эфир алкилфенола 10-20
изометилтетрагидрофталевый ангидрид 90-95
2,4,6-трис(диметиламинометил)фенол 0,8-1,0
кварц молотый 400-500



 

Похожие патенты:

Изобретение относится к покрывным эмалям горячей сушки, предназначенным для получения электроизоляционных защитных покрытий пропитанных обмоток, узлов и деталей электрических машин и аппаратов с изоляцией класса нагревостойкости F (155°С).
Изобретение относится к композиции на основе эпоксидной смолы, предназначенной для герметизации полупроводниковых приборов. .
Изобретение относится к области электротехники, в частности к токопроводящим клеевым композициям на основе эпоксидных смол, которые обладают высокой электропроводностью и высокой прочностью клеевых соединений при температурах от -60°С до 150°С, предназначенных для использования в приборной технике и микроэлектронике.

Изобретение относится к области электротехники, в частности к способу формирования полимерного корпуса вакуумного выключателя, который включает установку вакуумной камеры в пресс-форму, ее фиксацию и герметизацию камеры с последующим заполнением пространства между камерой и пресс-формой жидким диэлектриком.

Изобретение относится к способу получения электроизоляционного компаунда, который может быть использован для пропитки и заливки высоковольтных и низковольтных элементов электро- и радиоаппаратуры, трансформаторов, дросселей.

Изобретение относится к способу получения электроизоляционных эпоксидных самозатухающих компаундов, предназначенных для пропитки и заливки высоковольтных и низковольтных элементов электро - и радиоаппаратуры, работающих в интервале от -60oC до +150oC.

Изобретение относится к получению композиции эпоксидного связующего для получения огнестойких слоистых пластиков, преимущественно фольгированных, применяемых в радиотехнике, электротехнике, электронной технике и других отраслях промышленности, где требуются негорючие электроизоляционные материалы.

Изобретение относится к области электротехники, в частности к электроизоляционному заливочному компаунду, который может найти применение для заливки токопроводящих схем и деталей, для их герметизации и защиты элементов радиоэлектронной аппаратуры от влаги и механических воздействий

Настоящее изобретение относится к изолирующей смоле на основе сложного глицидилового эфира для изоляционных материалов в распределительных устройствах. Указанная смола содержит метилнадик-ангидрид и/или гидрированный метилнадик-ангидрид и имидазол структуры где R1, R2, R3 и R4 указаны в п.1 формулы. Полученная смола имеет существенно более высокую температуру стеклования при одновременно высоких качественных механических характеристиках и обладает стойкостью к образованию треков. 3 н. и 6 з.п. ф-лы, 1 пр.

Настоящее изобретение относится к области литьевых смол для коммутационных устройств. Описана твердая смоляная система для изоляционных материалов в коммутационных устройствах, содержащая твердую смолу на основе бисфенола A, которая имеет эпоксидное число (DIN ISO 16945) от ≥0,2 до ≤0,3, и жидкую смолу на основе бисфенола F, которая имеет эпоксидное число (DIN ISO 16945) от ≥0,4 до ≤0,63, где доля жидкой смолы на основе бисфенола F в смоле, измеренная как масса к общей массе смолы, составляет от ≥5% до ≤60%, причем твердая смоляная система перед отверждением имеет эпоксидное число (DIN ISO 16945) от ≥0,2 до ≤0,55, и твердая смоляная система в качестве смол включает только непосредственно указанные смолы. Также описано применение указанной выше твердой смоляной системы в качестве изоляционного материала в электрических коммутационных устройствах. Технический результат - получение твердой смоляной системы, обладающей низкой склонностью к растрескиванию и высоким сопротивлением продавливанию. 2 н. и 5 з.п. ф-лы, 1 пр.
Изобретение относится к электротехнике, а именно к теплогенерирующему электромеханическому преобразователю, предназначенному для нагрева и/или перемещения жидкой или газообразной среды. Устройство содержит дополнительный неподвижный элемент, выполненный из антифрикционного неэлектропроводящего материала, выполняющего функции радиального и/или упорного подшипника скольжения, из полимерного композиционного материала на основе эпоксидно-диановой смолы с наполнителем из порошка фторопласта, рубленого стекловолокна и дополнительно оксида алюминия Al2O3 или двуокиси кремния SiO2, что позволяет увеличить количество отводимого от первичной обмотки тепла. Увеличение коэффициента теплопроводности неподвижного теплоизолирующего элемента обеспечивает снижение температуры первичной обмотки теплогенерирующего электромеханического преобразователя, что соответственно повышает надежность его работы. 2 табл

Изобретение относится к отверждающейся композиции для получения электроизоляционного конструкционного материала для электрических или электронных компонентов. Отверждающаяся композиция содержит эпоксидную смолу, отвердитель и композицию наполнителей. Композиция наполнителей содержит волластонит и аморфный диоксид кремния. Поверхность одного из наполнителей обрабатывается силаном. Отвержденный продукт получен отверждением указанной отверждающейся композиции. Изобретение позволяет использовать эту отверждающуюся композицию прямо в керамическом корпусе коммутирующего устройства, и она имеет высокую стойкость к растрескиванию. 3 н. и 6 з.п. ф-лы, 3 табл., 2 пр.

Изобретение относится к высокочастотным композиционным диэлектрическим материалам, используемым в антенной технике и высокочастотных линиях передачи. Композиционный материал содержит уплотненный порошок фторопласта-4 с размером частиц не более 5 мкм, пропитанный связующим. В качестве связующего используют эпоксидную смолу с отвердителем. Эпоксидная смола представляет собой продукт конденсации эпихлоргидрина и анилина в щелочной среде, с вязкостью не более 200 мПа·сек, а отвердитель используют с вязкостью не более 40 мПа·сек. Техническим результатом изобретения является создание диэлектрического материала с малой диэлектрической проницаемостью, малым значением тангенса диэлектрических потерь, а также улучшение таких свойств, как прочность, модуль упругости на сжатие. Пропитку связующим проводят под давлением и при вакуумировании объема порошка с последующим отверждением. 1 ил., 1 табл.
Изобретение относится к составам для изоляции пластин магнитопроводов трансформаторов электрических сетей и может использоваться на производствах по изготовлению трансформаторов. Предложен состав для изоляции пластин магнитопроводов трансформаторов, включающий основу композиции - эпоксидную смолу, ароматический растворитель и отвердитель - гексаметилендиамин, а также магнетит с наноразмерными магнитными частицами в среде олеиновой кислоты при следующем соотношении компонентов, в масс.%: эпоксидная смола - 16-30, магнетит с наноразмерными магнитными частицами в среде олеиновой кислоты - 30-58, ароматический растворитель - 5-10, гексаметилендиамин - 1-2. Предложенный состав для изоляции пластин магнитопроводов трансформаторов позволяет значительно снизить время отверждения, а также обеспечивает повышение теплостойкости, механической, электрической прочности покрытия, а также электрического сопротивления при малой толщине.

Изобретение относится к составу двухкомпонентного эпоксиполиуретанового заливочного электроизоляционного компаунда и способу его получения. Компонента «А» состоит из мономерно-олигомерной смеси полиэпоксидов, состоящей из диглицидилового эфира бисфенола А, моноглицидилового эфира бисфенола А и бисфенола А или диглицидилового эфира бисфенола А, моноглицидилового эфира бисфенола А, бисфенола А и продукта присоединения 1 моля моноглицидилового эфира бисфенола А к 1 молю диглицидилового эфира бисфенола А, полиолов, состоящих из смеси триглицеридов рицинолевой, стеариновой, олеиновой, линолевой и линоленовой кислот, технологической добавки, дисперсного минерального наполнителя и красителя. Компонента «Б» состоит из смеси метилендипарафенилендиизоцианата и дихлорангидрида метилендипарафенилендикарбамидовой кислоты. Описан способ получения эпоксиполиуретанового компаунда путем последовательного добавления к полиэпоксиду технологической добавки, предварительно нагретых и термообработанных полиола, наполнителя и красителя с образованием компоненты «А» и последующим добавлением при температуре 20°С компоненты «Б». Технический результат - увеличение жизнеспособности и уменьшение исходной вязкости эпоксиполиуретанового компаунда, что позволяет осуществить заливку изделий больших объемов. 2 н.п. ф-лы, 7 ил., 2 табл., 1 пр.
Наверх