Способ сварки труб печей пиролиза в процессе проведения ремонтных работ

Изобретение относится к способам сварки труб печей пиролиза при проведении ремонтных работ и может быть использовано при ремонте трубопроводов, работающих при высоких температурах в науглероживающих атмосферах. Сварку ведут с предварительным подогревом до 730…750°С. После сварки проводят отжиг сварного соединения при температуре 700…750°С в течение 50…70 минут при толщине науглероженного слоя более 1 мм до 3 мм или при отсутствии отжига при толщине науглероженного слоя до 1 мм. Сварку проводят с использованием способа импульсно-дуговой сварки с прямоугольной формой импульсов тока с длительностью протекания тока импульса 250…300 мс и длительностью протекания тока паузы 260…310 мс. В результате получают качественное сварное соединение труб, имеющих науглероженный слой толщиной до 3 мм. 2 ил., 2 табл.

 

Изобретение относится к способам сварки труб при проведении ремонтных работ и может быть использовано при ремонте трубопроводов, изготовленных из аустенитных высоколегированных нержавеющих жаростойких сталей типа 45Х25Н35СБ, работающих на нефтеперерабатывающих предприятиях в науглероживающих атмосферах в виде блоков печей пиролиза.

Эксплуатация металла трубопроводов при высокой температуре и углеродосодержащей атмосфере приводит к выделению карбидов хрома (Сr7С3 и

Сr23С6) на их внутренней поверхности по границам зерен. Толщина науглероженного слоя (L) достигает 3 мм. Со стороны внешней стенки трубы толщина слоя с измененной структурой за весь период эксплуатации не превышает 0.5…0.6 мм. В этом объеме металла выпадают более сложные химические соединения на основе хрома (карбооксиды, карбооксинитриды). Одновременное действие агрессивной среды и межкристаллитной коррозии приводит, в конечном итоге, к разрушению материала. Металл с такой структурой и образующимися трещинами подлежит отбраковке, а трубопроводы - ремонту.

Известен способ сварки кольцевых стыков труб, предназначенных для работы при высоких температурах (Патент Японии "Способ сварки встык жаропрочных труб, полученных центробежным литьем" №57-7033, опубликованный 08.02.1982, МКИ В23К 9/23, В23К 31/06). Для предотвращения образования горячих трещин в шве предложено выполнять второй и последующие проходы, когда температура наплавленного металла выше температуры основного металла. Это изменяет направление теплоотвода и препятствует росту столбчатых зерен, по границам которых происходит ликвация серы и фосфора, способствующая образованию горячих трещин.

Недостатком такого способа сварки при проведении ремонтных работ печей пиролиза является то, что в процессе сварки нового участка трубы со старой трубой, имеющей науглероженный слой со стороны внутренней и внешней стенки (биметалл), формируется большое количество трещин, как в наплавляемом металле, так и в зоне термического влияния.

Известен способ ремонта сварных соединений деталей из нержавеющих сталей, предпочтительно стыков труб из аустенитной нержавеющей стали, работающих в коррозионной атмосфере химзаводов и атомных электростанций (Заявка Японии "Ремонт сварных соединений нержавеющей стали" № 55-42128, опубликованный 25.03.1980, МКИ В23К 31/06). С целью предотвращения трещин от коррозии под напряжением вырезают кольцо трубопровода, включающее в себя дефектный сварной стык, на наружные поверхности труб, прилегающие к вырезанному участку, наносят путем наплавки слой металла, более коррозионностойкий, чем основной металл труб, надевают на стык кольцо-муфту из металла, более коррозионностойкого, чем основной металл труб, и приваривают указанное кольцо-муфту кольцевыми швами к наплавленному участку.

Недостатком такого способа сварки при проведении ремонтных работ печей пиролиза является то, что в процессе наплавки слоя металла на науглероженный слой и последующей сварки кольца-муфты к наплавленному участку в данном сварном соединении формируется большое количество микротрещин. Проникающий внутрь рабочий газ продолжает интенсивно насыщать углеродом приповерхностный к трещинам объем металла, что приводит к дополнительному образованию карбидов, интенсивному развитию межкристаллитной коррозии и, следовательно, преждевременному выходу из строя данного участка трубопровода.

Задачей изобретения является применение способа импульсно-дуговой сварки и последующей термической обработки, позволяющих получать качественное сварное соединение из труб, имеющих науглероженный слой толщиной до 3 мм.

Способ сварки труб печей пиролиза из аустенитных высоколегированных нержавеющих жаростойких сталей в процессе проведения ремонтных работ при наличии науглероженного слоя металла трубы заключается в следующем. Сварку ведут с предварительным подогревом до 730…750°С. После сварки проводят отжиг сварного соединения при температуре 700…750°С в течение 50…70 минут при толщине науглероженного слоя 1…3 мм или при отсутствии отжига при толщине науглероженного слоя до 1 мм. Сварку проводят с использованием способа импульсно-дуговой сварки с прямоугольной формой импульсов тока с длительностью протекания тока импульса 250…300 мс и длительностью протекания тока паузы 260…310 мс.

На фиг.1 показана прямоугольная форма импульсов тока, где Iи, Iп - сила тока импульса и паузы, tи, tп - соответственно длительность протекания тока импульса и паузы.

Технический результат достигается за счет того, что процесс ведут способом импульсно-дуговой сварки с прямоугольной формой импульсов тока. Прямоугольная форма импульсов тока является наиболее эффективной с точки зрения переноса электродного металла в металл шва за счет того, что в данном случае время действия тока импульса максимально и равно полной длительности протекания тока импульса. Сила тока импульса Iи=145 А, сила тока паузы Iп=50 А.

В таблице 1 представлены данные по влиянию режимов сварки труб на средний размер зерна наплавляемого металла и дисперсию его распределения.

Проведенные исследования по влиянию длительности протекания тока импульса и тока паузы на структуру и свойства высоколегированного наплавляемого металла показали, что оптимальным режимом импульсно-дуговой сварки высоколегированной жаростойкой стали типа 45Х25Н35СБ является режим с длительностью протекания тока импульса 250…300 мс и длительностью протекания тока паузы 260…310 мс (таблица 1, режимы № 2 и № 4). Это позволяет получить наиболее равномерное распределение карбидных включений в наплавленном металле, измельчить структуру первичной кристаллизации (dср= 320 мкм, дисперсия от 13 до 15 мкм, режим № 2 и № 4).

Изменение длительностей протекания тока импульса и тока паузы в сторону их увеличения или уменьшения приводит к увеличению дисперсии зерен по размерам и уменьшению угла их разориентировки, что будет способствовать образованию межкристаллитных трещин через всю толщину сварного соединения в ходе эксплуатации (таблица 1, режимы № 1, № 3 и № 5). При сварке на постоянном питании дуги (таблица 1, режим № 6) средний размер зерна и его дисперсия максимальны (dср=400 мкм, дисперсия 37 мкм), что приводит к образованию трещин в наплавляемом металле даже при проведении послесварочного отжига.

В таблице 2 представлены режимы сварки труб в зависимости от толщины науглероженного слоя.

Предварительный подогрев (730…750°С) и последующий отжиг (700…750°С в течение 50…70 минут, при толщине науглероженного слоя L больше 1 мм) позволяет релаксировать термические напряжения и, следовательно, исключить образование трещин в сварном шве и зоне термического влияния. Уменьшение температуры подогрева ниже 730°С приводит к образованию трещин в процессе формирования корня шва. Более высокие температуры подогрева (выше 750°С) экономически не оправданы. Проведение послесварочного отжига при температурах ниже 700°С не исключают релаксацию термических напряжений, что приводит к формированию трещин в наплавляемом металле и зоне термического влияния. Более высокие температуры отжига (выше 750°С) экономически не оправданы. Данный режим импульсно-дуговой сварки труб с толщиной науглероженного слоя до 1 мм позволяет получить качественное сварное соединение, не используя последующий отжиг.

На фиг.2 изображена форма разделки кромок перед сваркой. Скос свариваемых кромок составляет угол 30°, а притупление 0.5…1.5 мм.

Пример 1. Ведется ремонт трубопроводов печей пиролиза. Участки труб, где наблюдаются коробления и вздутия, вырезаются. После вырезки дефектного участка трубы одним из известных способов (визуально, с помощью шлифования и травления) определяют толщину науглероженного слоя трубы. Из исходной трубы вырезают кусок необходимой длины, заменяющий вырезанный участок трубопровода. Затем согласно фиг.2 разделывают кромки труб. Далее осуществляется сборка на монтаже путем фиксации труб и выполнения прихваток. После осуществляют предварительный подогрев кромок труб до 730…750°С на расстоянии 20 мм от сторон стыка. Корневой слой заваривают покрытыми электродами марки ГС-1 способом импульсно-дуговой сварки с прямоугольной формой импульсов тока с длительностью протекания тока импульса 250…300 мс и длительностью протекания тока паузы 260…310 мс. Заполняющие и облицовочный слой выполняют этим же способом сварки покрытыми электродами марки ОЗЛ-9А. После сварки сварные соединения, имеющие науглероженный слой 1 мм<L≤3 мм, выдерживают в течение 50…70 минут при температуре 700…750°С и охлаждают под слоем изоляции.

Пример 2. Ведется ремонт трубопроводов печей пиролиза. Участки труб, где наблюдаются коробления и вздутия, вырезаются. После вырезки дефектного участка трубы одним из известных способов (визуально, с помощью шлифования и травления) определяют толщину науглероженного слоя трубы. Из исходной трубы вырезают кусок необходимой длины, заменяющий вырезанный участок трубопровода. Затем согласно фиг.2 разделывают кромки труб. Далее осуществляется сборка на монтаже путем фиксации труб и выполнения прихваток. После осуществляют предварительный подогрев кромок труб до 730…750°С на расстоянии 20 мм от сторон стыка. Корневой слой заваривают покрытыми электродами марки ГС-1 способом импульсно-дуговой сварки с прямоугольной формой импульсов тока с длительностью протекания тока импульса 250…300 мс и длительностью протекания тока паузы 260…310 мс. Заполняющие и облицовочный слой выполняют этим же способом сварки покрытыми электродами марки ОЗЛ-9А. После сварки сварные соединения, имеющие науглероженный слой до 1 мм, последующему отжигу не подвергают.

Таблица 1
№ с/с Ток сварки tи, мс tп, мс Средний размер зерна, dcp, мкм Дисперсия зерен по размерам, мкм
1 IИ = 145 А
IП = 50 А
80 260 340 35
2 250 260 320 15
3 100 400 360 28
4 300 300 320 13
5 300 170 380 30
6 I=95 A - - 400 37

Таблица 2
Толщина науглероженного слоя, мм Температура подогрева, °С Температура последующего отжига, °С Длительность тока импульса
(tи), мс
Длительность тока паузы (tп), мс Сварочные материалы
корень заполнение
облицовка
До 1 мм 730…750 - 250…300 260…310 ГС-1 ⌀3 мм ОЗЛ-9
⌀3 мм
От 1 до 3 мм 730…750 700…750 250…300 260…310 ГС-1
⌀3 мм
ОЗЛ-9
⌀3 мм

Способ сварки труб из аустенитных высоколегированных нержавеющих жаростойких сталей, имеющих науглероженный слой толщиной до 3 мм, в процессе проведения ремонтных работ печей пиролиза, отличающийся тем, что осуществляют импульсно-дуговую сварку с прямоугольной формой импульсов тока с длительностью протекания тока импульса 250…300 мс и длительностью протекания тока паузы 260…310 мс и с предварительным подогревом кромок труб до 730…750°С, при этом при толщине науглероженного слоя 1-3 мм после сварки проводят отжиг сварного соединения при температуре 700…750°С в течение 50…70 мин.



 

Похожие патенты:
Изобретение относится к области машиностроения, к термитной сварке соединений, а конкретнее к сварке рельсов с использованием алюминотермитной сварки. .

Изобретение относится к способу лазерно-световой сварки стали и может найти применение в различных отраслях машиностроения. .

Изобретение относится к области металлургии. .

Изобретение относится к области сельскохозяйственного машиностроения и ремонта машин, а именно к способам изготовления, восстановления и упрочнения лемехов плугов сельскохозяйственных машин.
Изобретение относится к производству ответственных металлоконструкций, в частности к нефте- и газотрубному и может быть использовано для термопластического упрочнения сварных швов.

Изобретение относится к способу производства металлического изделия, металлическому изделию, способу соединения металлических деталей и конструкции с соединением и может найти использование в различных отраслях машиностроения.

Изобретение относится к области термообработки. .

Изобретение относится к способам электронно-лучевой наплавки плоских и цилиндрических поверхностей и может быть использовано как при изготовлении новых, так и при восстановлении поверхности изношенных деталей, работающих в условиях интенсивного абразивного износа в сочетании с ударными нагрузками.
Изобретение относится к металлургии, в частности к технологии термической обработки труб из низколегированной конструкционной стали, преимущественно 09Г2С, и может быть использовано при изготовлении сварных соединительных элементов и узлов магистральных и промысловых трубопроводов большого диаметра (до 1420 мм) объектов нефтяной и газовой промышленности, транспортирующих неагрессивные нефть, нефтепродукты и газ.
Изобретение относится к области термической обработки сварных соединений, в частности сварных конструкций, применяемых при пониженных температурах. .
Изобретение относится к области машиностроения и ресурсосбережения машин и механизмов, конкретно к композициям для восстановления изношенных металлических поверхностей деталей на основе черных и цветных металлов путем создания на поверхностях сервовитных покрытий, обладающих износостойкостью, коррозионной стойкостью, достаточной прочностью и пониженным коэффициентом трения.

Изобретение относится к машиностроению, в частности к газотурбинному, и может быть использовано для устранения дефектов в литых деталях, для ремонта трещин и выравнивания поверхности.
Изобретение относится к области машиностроения и ремонта деталей машин. .
Изобретение относится к области ремонта подземного оборудования нефтяных скважин, а именно к способам ремонта насосных штанг. .

Изобретение относится к восстановлению деталей корпуса автосцепки и может быть использовано при ремонте автосцепок железнодорожных вагонов, спецтехники и техники для обслуживания путей.

Изобретение относится к области ремонта изделий из черных металлов, бывших в длительной эксплуатации, а именно к технике и технологии восстановительного ремонта штанг насосных (ШН), получивших широкое применение в нефтедобыче.
Изобретение относится к электродуговым методам сварки и может быть использовано для электродуговой сварки рельсов железнодорожного пути. .

Изобретение относится к машиностроению, а именно к объемной штамповке лопаток для турбомашин. .

Изобретение относится к турбомашиностроению и может быть использовано при восстановлении изношенных поверхностей гребешков лабиринтных уплотнений рабочих лопаток турбины газотурбинного двигателя.

Изобретение относится к технике ремонта трубопроводного транспорта, преимущественно магистральных газопроводов. .

Изобретение относится к технологии получения неразъемных соединений, в частности к способу дуговой сварки в инертных газах стыковых соединений разнородных алюминиевых сплавов, и может быть использовано в авиастроении, ракетостроении, судостроении и других отраслях машиностроения для получения соединений панельных конструкций из алюминиевых сплавов.
Наверх