Реактор для проведения процесса полимеризации (варианты)

Изобретение может быть использовано для получения синтетических каучуков. Полимеризационную шихту, заранее охлажденную до температуры реакции, подают через штуцер 8 в реактор. Реактор снабжен теплообменным устройством 13 для подачи и охлаждения катализаторного раствора типа «труба в трубе», встроенным вместо одной трубки пучка 4 и расположенным в периферийной зоне со стороны перемешивающего устройства 7. Трубка для подачи и охлаждения катализаторного раствора 10 расположена внутри трубки с хладагентом. Для вывода катализаторного раствора из трубки предназначен опуск 12, который направлен выходным торцом в сечение расположения второго яруса перемешивающего устройства 7, считая снизу. Изобретение позволяет увеличить производительность реактора полимеризации за счет дополнительного охлаждения катализаторного раствора и увеличить длительность процесса до забивки. 2 н. и 2 з.п. ф-лы, 4 ил.

 

Изобретение относится к конструкциям аппаратов для проведения процессов полимеризации в растворе или суспензии и может быть использовано, например, для синтеза бутилкаучука.

Известно, что реакция полимеризации изобутилена с изопреном в присутствии катализатора - модифицированного хлористого алюминия протекает мгновенно с низкой энергией активации. Поэтому для подавления нежелательных процессов, таких как передача цепи и обрыв цепи, ее (реакцию) проводят при предельно низкой температуре - близкой к температуре замерзания разбавителя. В качестве разбавителя используется хлористый метил. Катализаторный раствор необходимо подавать с температурой, равной или ниже температуры полимеризации. Однако в реальных условиях, несмотря на предварительное охлаждение катализаторного раствора в специальном холодильнике, в силу неизбежных тепловых потерь в полимеризатор катализаторный раствор приходит с температурой на 10-20°С выше. Переохлаждение катализаторного раствора на соответствующее количество градусов невозможно, поскольку температура полимеризации поддерживается близкой к температуре замерзания катализаторного раствора. Это приводит к избыточному образованию низкомолекулярного полимера в момент первого контакта с мономерами, что является одной из главных причин полимерных отложений на внутренних поверхностях и, как следствие, к ускорению забивки полимеризатора и выводу его на чистку.

Известен реактор полимеризации (патент США №5417930, кл. С08F 2/00, опубликован 23.05.95), включающий в себя двухтрубчатую распределительную систему, состоящую из внутреннего или центрального пучка труб, через которые реакционная смесь подается в одном направлении и рециркулируется через внешний пучок труб в противоположном направлении, и заключенную в цилиндрический корпус. Для поглощения тепла реакции в межтрубное пространство подается хладагент.

Этот реактор имеет недостаток, заключающийся в том, что при самой незначительной забивке любой из трубок эта трубка полностью выключается из работы, резко сокращая теплопередающую поверхность и сокращая продолжительность непрерывного процесса.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению является реактор для проведения процесса полимеризации (патент РФ №1615935, кл. В01J 19/18, опубликован бюл. №19, 1994 г.). Реактор содержит цилиндрический корпус, многоярусную лопастную мешалку, пучки теплообменных трубок, которые разделены на сектора, и технологические штуцера для подачи полимеризационной шихты и вывода продуктов реакции. Штуцера для подачи полимеризационной шихты и вывода продуктов реакции расположены на нижней и верхней крышках соответственно. Штуцер для подачи катализаторного раствора расположен на боковой поверхности корпуса.

Хладагент для поглощения тепла реакции подается внутрь трубок пучков, а реакционная масса находится в межтрубном пространстве.

Недостатком описанного реактора является то, что катализаторный раствор, предварительно охлажденный в выносном холодильнике до температуры, близкой к температуре реакции, в реактор входит в силу неизбежных тепловых потерь на 10-20°С выше температуры реакции. Это, как указано выше, приводит к забивке реактора низкомолекулярным полимером.

Задачей настоящего изобретения является увеличение производительности реактора полимеризации за счет дополнительного охлаждения катализаторного раствора и вследствие чего увеличения длительности процесса до забивки.

Указанный результат достигается реактором для проведения процесса полимеризации, содержащим цилиндрический корпус, многоярусную лопастную мешалку, пучки теплообменных трубок, разделенных на сектора и ограниченных верхними и нижними крышками, технологические штуцера для подачи шихты, вывода продуктов реакции и хладагента, который снабжен теплообменным устройством для подачи и охлаждения катализаторного раствора типа «труба в трубе», встроенным вместо одной трубки пучка и расположенным в периферийной зоне со стороны перемешивающего устройства, причем трубка для подачи и охлаждения катализаторного раствора расположена внутри трубки с хладагентом, штуцер для подачи катализаторного раствора расположен в верхней крышке пучка, для вывода катализаторного раствора из трубки предназначен опуск, который направлен выходным торцом в сечение расположения второго яруса перемешивающего устройства, считая снизу.

Реактор может быть снабжен одним или более теплообменным устройством для подачи и охлаждения катализаторного устройства, в последнем случае теплообменные устройства расположены в диаметрально расположенных пучках теплообменных трубок.

Как вариант предлагается реактор для проведения процесса полимеризации, содержащий цилиндрический корпус, многоярусную лопастную мешалку, пучки теплообменных трубок, разделенных на сектора и ограниченных верхними и нижними крышками, технологические штуцера для подачи шихты, вывода продуктов реакции и хладагента, который снабжен теплообменным устройством для подачи и охлаждения катализаторного раствора, выполненным в виде трубки и расположенным в периферийной зоне пучка теплообменных трубок со стороны перемешивающего устройства, штуцер для подачи катализаторного раствора расположен в верхней крышке пучка, для вывода катализаторного раствора из трубки предназначен опуск, который направлен выходным торцом в сечение расположения второго яруса перемешивающего устройства, считая снизу.

Реактор может быть снабжен одним или более теплообменным устройством, в последнем случае теплообменные устройства расположены в нескольких пучках, равноудаленных друг от друга.

На фиг.1 и 3 схематично изображен вертикальный разрез предлагаемого реактора соответственно вариант 1 и вариант 2; на фиг.2 и 4 - горизонтальное сечение реактора соответственно по варианту 1 и варианту 2.

Реактор для проведения процесса полимеризации состоит из корпуса 1, верхнего и нижнего днищ 2 и 3, в котором расположены равномерно по сечению корпуса теплообменные пучки 4. Для подачи хладагента предназначена нижняя крышка 5 пучка 4, для вывода - верхняя крышка 6. Реактор снабжен многоярусным перемешивающим устройством 7. Дли ввода полимеризационной шихты на нижнем днище 3 реактора смонтирован штуцер 8, для вывода реакционной смеси на верхнем днище 2 смонтирован штуцер 9. Реактор снабжен теплообменным устройством для подачи и охлаждения катализаторного раствора, выполненным в виде «труба в трубе» трубки 10 и 11 соответственно (см. фиг.1) и в виде трубки 10 (см. фиг.3). Для вывода катализаторного раствора в нижней части трубки 10 смонтирован опуск 12. Детали 10, 11 и 12 представляют собой встроенное теплообменное устройство 13 типа «труба в трубе», которое на фиг.1 обозначено штриховыми линиями.

На фиг.2 изображен вид сверху на реактор без верхней крышки (вариант 1). Основные детали: 1 - цилиндрический корпус, 4 - теплообменные пучки (в данном случае их шесть), 13 - теплообменное устройство (в данном случае их два), 7 - многоярусное перемешивающее устройство.

На фиг.4 изображен вид сверху на реактор без верхней крышки (вариант 2). Основные детали: 1 - цилиндрический корпус, 4 - теплообменные пучки (в данном случае их шесть), 10 - теплообменные трубки для подачи катализатора (в данном случае их 3), 7 - многоярусное перемешивающее устройство.

Реактор работает следующим образом. Полимеризационную шихту, состоящую из смеси изобутилена с изопреном, разбавленную хлористым метилом и заранее охлажденную до температуры реакции, подают потоком 14 в штуцер 8. Вывод реакционной смеси осуществляют потоком 15 через штуцер 9 при интенсивном перемешивании многоярусным перемешивающим устройством. Съем выделяющего в результате реакции и перемешивания тепла ведут через развитую поверхность теплообменных пучков 4 хладагентом. Хладагент подают в нижние крышки 5 потоками 16. Отработанный хладагент собирают в верхних крышках 6 пучков 4 и потоками 17 выводят в рецикл. Катализаторный раствор, представляющий собой слабо концентрированный раствор модифицированного хлористого алюминия в хлористом метиле, с температурой кипения на 10-20°С выше температуры реакции потоком 18 подают в теплообменное устройство 13 (вариант 1). Теплообменное устройство 13 встроено вместо одной трубки пучка и расположено в периферийной зоне пучков теплообменных трубок 4 со стороны многоярусного перемешивающего устройства 7. Охлажденный хладагентом до температуры реакции катализаторный раствор через опуск 12, выходной торец которого направлен в сечение второго яруса перемешивающего устройства, считая снизу, поступает в зону наиболее интенсивного перемешивания и, смешиваясь с реакционной смесью при температуре реакции, обеспечивает получение полимера с минимальным содержанием низкомолекулярной фракции.

Для улучшения распределения катализатора по сечению реактора возможна установка двух теплообменных устройств, как показано на фиг.2. Реактор работает как в предыдущем случае, но катализаторный раствор подается в два теплообменных устройства 13, расположенных в диаметрально расположенных пучках теплообменных трубок, что позволяет более равномерно распределить катализатор по сечению реактора и увеличить надежность охлаждения катализатора до возможно более низкой температуры.

По варианту 2 охлаждение катализаторного раствора в реакторе осуществляется реакционной смесью (фиг.4). В этом случае катализаторный раствор подают по трубке 10, которая расположена в периферийной зоне пучка теплообменных трубок 4 со стороны перемешивающего устройства. Охлажденный до температуры реакции катализаторный раствор через опуск 12, выходной торец которого направлен в сечение второго яруса перемешивающего устройства, считая снизу, также попадает в зону наиболее интенсивного перемешивания и, смешиваясь с реакционной смесью при температуре реакции, обеспечивает получение полимера с минимальным содержанием низкомолекулярной фракции.

Для увеличения надежности охлаждения катализатора и улучшения его распределения по сечению реактора возможна установка трубок в нескольких пучках, равноудаленных друг от друга. На фиг.4 показана установка трех теплообменных трубок 10. Вариант 2 позволяет упростить конструкцию реактора.

Таким образом, предлагаемая конструкция по сравнению с известной позволяет за счет дополнительного охлаждения катализаторного раствора увеличить длительность цикла и, как следствие, увеличить производительность реактора.

1. Реактор для проведения процесса полимеризации, содержащий цилиндрический корпус, многоярусную лопастную мешалку, пучки теплообменных трубок, разделенных на сектора, которые ограничены верхними и нижними крышками, технологические штуцеры для подачи шихты, вывода продуктов реакции и хладагента, отличающийся тем, что реактор снабжен теплообменным устройством для подачи и охлаждения катализаторного раствора типа «труба в трубе», встроенным вместо одной трубки пучка и расположенным в периферийной зоне со стороны перемешивающего устройства, причем трубка для подачи и охлаждения катализаторного раствора расположена внутри трубки с хладагентом, штуцер для подачи катализаторного раствора расположен в верхней крышке пучка, для вывода катализаторного раствора из трубки предназначен опуск, который направлен выходным торцом в сечение расположения второго яруса перемешивающего устройства, считая снизу.

2. Реактор по п.1, отличающийся тем, он снабжен одним или более теплообменным устройством для подачи и охлаждения катализаторного устройства, в последнем случае теплообменные устройства расположены в диаметрально расположенных пучках теплообменных трубок.

3. Реактор для проведения процесса полимеризации, содержащий цилиндрический корпус, многоярусную лопастную мешалку, пучки теплообменных трубок, разделенных на сектора, которые ограничены верхними и нижними крышками, технологические штуцеры для подачи шихты, вывода продуктов реакции и хладагента, отличающийся тем, что реактор снабжен теплообменным устройством для подачи и охлаждения катализаторного раствора, выполненным в виде трубки и расположенным в периферийной зоне пучка теплообменных трубок со стороны перемешивающего устройства, штуцер для подачи катализаторного раствора расположен в верхней крышке пучка, для вывода катализаторного раствора из трубки предназначен опуск, который направлен выходным торцом в сечение расположения второго яруса перемешивающего устройства, считая снизу.

4. Реактор по п.3, отличающийся тем, он снабжен одним или более теплообменным устройством, в последнем случае теплообменные устройства расположены в нескольких пучках, равноудаленных друг от друга.



 

Похожие патенты:

Изобретение относится к технологии получения бутилкаучука, применяемого для производства автомобильных камер, резинотехнических изделий, галобутилкаучука, и может быть применено в нефтехимической промышленности.

Изобретение относится к новым способам полимеризации, включающим разбавители, включая фторуглеводороды, и их применение для получения полимеров с новыми распределениями последовательностей.

Изобретение относится к способу получения бутилкаучука путем полимеризации. .

Изобретение относится к способу улучшения перерабатываемости (технологичности) полимеров бутилкаучуков за счет увеличения в полимерной цепи количества повторяющихся звеньев, происходящих, по меньшей мере, из одного мультиолефинового мономера.

Изобретение относится к сополимерам этилена и бутадиена. .

Изобретение относится к области автоматизации технологических процессов производства синтетического каучука и может быть использовано в производстве бутилкаучука для различного оформления процессов, например, при получении химических модифицированных каучуков.
Изобретение относится к способу получения полимеров на основе изобутилена в присутствии альтернативной инициирующей системы. .

Изобретение относится к способу получения изоолефиновых сополимеров. .

Изобретение относится к конструкции реакционного оборудования, используемого для производства экстракционной фосфорной кислоты из различных видов природного фосфатного сырья.

Изобретение относится к новым способам полимеризации для получения полимеров с использованием реакторных систем штыкового охлаждения и растворителей, включающих гидрофторуглероды.

Изобретение относится к области химической промышленности. .

Изобретение относится к реакторам и тепломассообменным аппаратам и может быть использовано в кремний органической промышленности для получения алкоксисиланов. .

Реактор // 2330715
Изобретение относится к химическому машиностроению, к конструкциям реакционных аппаратов и может быть применено для интенсификации гетерогенных процессов при избыточном давлении с большим газо- и тепловыделением.

Изобретение относится к химическим технологиям и предназначено для осуществления гетерогенных химических реакций, проходящих с большим тепловым эффектом. .

Изобретение относится к конструкции реакционного оборудования, используемого для производства экстракционной фосфорной кислоты из различных видов природного фосфатного сырья.

Изобретение относится к реакторам смешения и может найти применение в химической, нефтехимической, микробиологической, биохимической и других отраслях промышленности при проведении гидромеханических, массообменных и реакционных процессов, особенно с высоковязкими жидкостями.

Изобретение относится к области химической технологии, экологии, а более подробно к способам проведения химических реакций, в частности окисления в сверхкритических средах-флюидах (или растворителях).

Изобретение относится к производству хлорсодержащих окислителей, применяемых при обеззараживании и очистке питьевой воды, сточных и оборотных вод. .

Изобретение относится к области химической технологии, а именно к реакторам для проведения и интенсификации гетерогенных химико-технологических процессов, в частности процессов растворения и выщелачивания ценных компонентов из природных и техногенных веществ, механической активации мазута с углем и т.п
Наверх