Способ получения высокоосновного полигидроксохлорида алюминия

Изобретение относится к неорганической химии и может быть использовано при получении высокоосновного полигидроксохлорида алюминия, используемого в качестве коагулянта при подготовке воды хозяйственно-питьевого назначения, в производстве бумаги и картона, а также в составах при получении керамических изделий спецназначения, медицинских препаратов и парфюмерно-косметических композиций. Согласно изобретению гранулы алюминийсодержащего сплава контактируют с водным раствором низкоосновного оксихлорида алюминия с концентрацией АT3+ от 7,0 до 9,0 мас.% и рН 1,0-2,5 при температуре 80-90°С до достижения рН в растворе 4,1-4,2. При этом образуется коллоидный раствор, содержащий до 97,2% высокоосновного полигидроксохлорида алюминия с атомным отношением Сl-/Аl3+=0,46÷0,52 и содержанием алюминия 11,8-12,8 мас.%. Изобретение позволяет получить продукт высокого качества, что особенно важно при использовании его в технических и медицинских целях. 4 табл., 2 ил.

 

Изобретение относится к способам получения основного хлорида алюминия высокой основности, используемого в качестве коагулянта при подготовке воды хозяйственно-питьевого назначения, в производстве бумаги и картона, а также в составах при получении керамических изделий спецназначения, медицинских препаратов и парфюмерно-косметических композиций.

Основные хлориды алюминия (ОХА) представляют собой неполностью гидролизованные хлориды алюминия и существуют в виде солей различной основности: 1/3-, 2/3- и 5/6-основности, где 1/3-, 2/3- и 5/6 означают отношение ОH--групп в сумме OH- и Сl- анионов в молекуле соли [G.Klenert, G.Denk. Z.Anorg. und Allg. Chem. 1959. В. 301. №3/4. S.271; Э.А.Левицкий, В.Н.Максимов. Докл. АН СССР. 1961. Т.141. №4. С.865]. В соответствии с этим 5/6-основному хлориду алюминия соответствует формула Аl2(ОН)5Сl. Оксихлорид алюминия такого состава имеет высшую основность (атомное отношение Сl-/Аl3+=0,5), в водных растворах при рН≥4,0 существует в полимерной форме, в связи с чем называется полигидроксохлоридом алюминия (ПГХА) и среди оксихлоридов алюминия обладает максимальной коагулирующей способностью [В.В.Гончарук, И.М.Соломенцева, Н.Г.Герасименко. Хим. и техн. воды. 1999. Т.21. №1. С.52; А.П.Алексеева. ВСТ. 2003. №2. C.11].

Существует значительное число способов получения основных хлоридов алюминия [В.В.Образцов, А.К.Запольский. Хим. и техн. воды. 1984. Т.6. №3. С.261; А.П.Шутько, В.Ф.Серченко, Я.Б.Козаковский. Очистка воды основными хлоридами алюминия. Киев. Изд. "Техника". 1984; В.Ф.Гетманцев. ВСТ. 2001. №3. С.8], однако большинство из них позволяет получать оксихлориды низкой основности или их смеси.

В технологии водоподготовки большое значение имеет доза коагулянта, необходимая для достижения требуемой степени очистки. Остаточный алюминий в очищаемой воде относится к нейротропным ядам, в связи с чем требованиями СанПИН 2.1.4.1074-01 содержание остаточного алюминия в воде не должно превышать 0,5 мг/дм3. В связи с этим уменьшение дозы коагулянта при сохранении требуемой степени очистки воды является возможным не только с экономической точки зрения, но и с позиции сохранения здоровья потребителей воды. Решение этой проблемы позволяет осуществить высокоосновный ПГХА.

Кроме того, реакция растворения металлического алюминия в хлороводородной кислоте протекает с выделением водорода, и в силу этого процесс получения ПГХА взрывоопасен, а также несет определенные трудности при загрузке сырья. Большое значение имеет также качество ПГХА не только в отношении содержания в нем алюминия и его основности, но и по дисперсному составу. Большинство производных ОХА представляют собой смеси солей алюминия различной основности, высокоосновные же оксихлориды являются полидисперсными системами, т.е. содержащими полимерные аквагидроксокомплексы алюминия с широким распределением по размерам и зарядам, что отрицательно отражается на свойствах получаемых на основе ПГХА керамических изделиях спецназначения и косметических композиций.

В связи с этим упрощение технологического процесса получения ПГХА, снижение его стоимости и повышение качества продукта является практически важной проблемой.

Известен способ получения основного хлорида алюминия путем обработки алюминиевого сплава 5-15%-ной соляной кислотой при 20-25°С в течение 2-24 часов в зависимости от концентрации соляной кислоты и температуры обработки [А.с. СССР 618343, С01F 7/56. Б.И. №29, 1978].

Недостатками указанного способа являются:

- низкое содержание основного вещества в получаемом продукте (10% по Аl2О3);

- использование водного раствора соляной кислоты, обладающего высокой коррозионной способностью;

- использование в качестве исходного сырья сплавов с большим содержанием элементов с высокотоксическими свойствами (Sn - до 20%; Сu - до 10%; Gr - 24%; Zn - до 12% и др.), что исключает использование продукта для подготовки хозпитьевой воды и для других технических и медицинских целей, а также создает проблему утилизации большого количества шлама, содержащего вредные элементы.

Известен способ получения основного хлорида алюминия путем взаимодействия водного раствора соляной кислоты с металлическим алюминием в виде слитков алюминия с кажущейся плотностью (2,2-2,6)·103 кг/м3. Пpoцecc проводится в двух реакторах с циркуляцией рабочего раствора с подъемом температуры до 95°С [Пат. РФ 2131845, С01F 7/56. опубл.20.06.1997].

Недостатками указанного способа являются:

- относительно сложная технологическая схема с циркуляцией реакционной смеси через систему из двух реакторов, что при использовании 11%-ной соляной кислоты требует решения защиты аппаратуры и трубопроводов от коррозии;

- недостаточно высокое содержание основного вещества в получаемом продукте - 18,2% по Аl2О3;

- наличие низкоосновных оксихлоридов алюминия в продукте реакции, о чем свидетельствует значение атомного отношения хлора к алюминию, равное 0,55;

- использование в качестве сырья алюминиевых слитков с определенной пористостью, что вызывает необходимость предварительного проведения операции газонасыщения алюминиевого расплава и его кристаллизации в технологии металлургического производства. Последнее обстоятельство делает указанный способ получения ОХА не универсальным, а привязанным к конкретным условиям алюминиевого производства.

Известен способ получения основного хлорида алюминия путем добавления алюминиевого порошка, просеянного через сито 200 меш к водному раствору хлорида алюминия с последующим нагреванием реакционной массы при 90±5°С [Pat. US 4944933, C01F 7/56, 1990]. Получаемый продукт содержит до 13% Аl, имеет в своем составе фракцию полиоксихлорида алюминия и используется в производстве косметических средств - антиперспирантов.

Недостатками указанного способа являются:

- использование относительно дефицитного сырья - алюминиевого порошка с определенной степенью дисперсности;

- добавление алюминиевого мелкодисперсного порошка к раствору хлорида алюминия требует очень аккуратного дозирования, т.к. из-за высокой активности поверхности и повышения реакционной способности при несоблюдении этого режима возможен неконтролируемый ход реакции со взрывом;

- процесс предусматривает получение продукта в сухом виде путем термического высушивания или вымораживанием, что неизбежно приведет к увеличению его стоимости;

- в составе продукта реакции находится высокоосновный полиоксихлорид алюминия (фракция III с отношением Сl-/Аl3+=0,45), однако содержание его невысокое - 20-35 мас.%.

Известен способ получения основного хлорида алюминия путем обработки алюминийсодержащего сплава 5-15%-ной соляной кислотой при температуре 90-95°С [Пат. РФ 2083495, C01F 7/56. Б.И. №19, 1997]. К недостаткам данного способа относится следующее:

- процесс растворения алюминийсодержащего сплава в соляной кислоте протекает очень бурно с выделением газообразного водорода, образующего с кислородом воздуха взрывоопасные смеси;

- для поддержания постоянной скорости реакции в реактор необходимо периодически добавлять свежие порции алюминийсодержащих гранул, передозировка которых может привести к резкому ускорению реакции с выбросом реакционной массы через загрузочное отверстие;

- реакция проводится при температуре 90-95°С с выделением паров соляной кислоты, что требует использования эффективного обратного холодильника и осложняет процесс загрузки в реактор очередных порций гранул;

- весь процесс растворения гранул и гидролиза хлорида алюминия протекает в условиях сильно кислой коррозионной среды, что требует использования специальных материалов в исполнении реакционной аппаратуры и трубопроводов.

Наиболее близким является способ получения основного хлорида алюминия путем обработки алюминийсодержащего сплава, находящегося под слоем воды, 35%-ной соляной кислотой при температуре 40-45°С с последующим гидролизом хлорида алюминия до его основной соли в том же реакторе при температуре 70-90°С. Указанный способ позволяет получать полигидроксохлорид алюминия с мольным отношением Сl-/Al3+, равным 0,46-0,52 (Пат. РФ 2280615, С01F 7/56, Б.И. №21, 2006).

Однако имеет следующие недостатки:

- процесс протекает в сильно коррозионной среде, что требует применения спецматериалов в исполнении оборудования: графитовых решеток в реакторе, графитовый обратный холодильник, спецстали;

- при добавлении концентрированной соляной кислоты к гранулам, находящимся под слоем воды, возникает индукционный период, длительность которого неопределенна, скорость же последующей реакции нарастает нелинейно, что может привести к неконтролируемому ходу реакции.

В предлагаемом изобретении решается важная задача получения высокоосновного полигидроксохлорида алюминия безопасным способом, практически в отсутствии коррозионной среды с использованием в качестве большей части сырья недорогого, доступного, производимого в промышленности низкоосновного ОХА.

При реализации предлагаемого способа получения ПГХА получают следующий технический результат:

во-первых, в качестве основного компонента исходного сырья используется водный раствор низкоосновного ОХА с содержанием алюминия 4,5-10% (в зависимости от производителя этого продукта), обладающий низкой коррозионной способностью (рН 1,0-2,5), что позволяет использовать оборудование из обычной или низколегированной стали;

во-вторых, процесс отличается высокой безопасностью, т.к. протекает в мягких условиях (атмосферное давление, температура 80-90°С), реакция протекает гладко без выделения большого количества водорода и тепла;

в-третьих, все реагенты загружаются в реактор до начала процесса, после чего реактор герметизируется и может продуваться инертным газом;

в-четвертых, мягкие условия процесса не требуют использования высокоэффективного обратного холодильника, а отсутствие паров НС1 не требует решения вопросов утилизации абгазов;

в-пятых, количество добавляемых гранул алюминийсодержащего сплава определяется концентрацией (по Al3+) используемого в качестве сырья низкоосновного ОХА и конечной заданной концентрацией Al3+ в продукте реакции (11,8-12,8 мас.%), что позволяет существенно снизить стоимость получаемого высокоосновного ПГХА в сравнении с производимыми аналогами;

в-шестых, получаемый продукт отличается высоким качеством, т.к. содержание полигидроксохлорида алюминия в нем составляет до 97,2%, что особенно важно при использовании его в технических и медицинских целях.

Поставленный технический результат достигается в способе получения высокоосновного полигидроксохлорида алюминия при контактировании гранул алюминийсодержащего сплава с водным раствором низкоосновного оксихлорида алюминия с концентрацией Al3+ от 7,0 до 9,0 мас.% и рН 1,0-2,5 при температуре 80-90°С до достижения рН в растворе 4,1-4,2 с образованием коллоидного раствора, содержащего до 97,2% высокоосновного полигидроксохлорида алюминия с атомным отношением Сl-/Al+=0,46÷0,52 и содержанием алюминия 11,8-12,8 мас.%.

Причиной высокого качества получаемого продукта являются физико-химические закономерности процесса образования полигидроксохлорида алюминия из низкоосновного ОХА. Последний представляет собой однофазную систему (истинный раствор поликатионов алюминия), способную к формированию в ней зародышей новой фазы. В данном случае при контакте с поверхностью алюминийсодержащих гранул, находящихся в реакционной зоне, происходит гетерогенное зародышеобразование с последующим ростом зародышей за счет реакции гидролитической поликонденсации гидроксида алюминия. Практически процесс протекает по механизму псевдоматричной поликонденсации, где роль матрицы играют зародыши новой фазы. Процесс роста возникающих кластеров алюмоксановой структуры (>А1-O-А1<) продолжается спонтанно до некоторого характеристического размера, определяемого величиной поверхностной энергии частиц, что обуславливает узкое распределение частиц по размерам. Присутствие в дисперсной системе противоионов хлора определяет седиментационную устойчивость дисперсии, в результате чего конечный продукт представляет собой высококонцентрированный коллоидный раствор с узким молекулярно-массовым распределением частиц дисперсной фазы - полигидроксохлорида алюминия, что подтверждается практически мономодальным характером гистограммы распределения частиц в растворе ПГХА (Фиг.1) и гистограммой распределения частиц в продуктах реакции сплавов алюминийсодержащих гранул (АГ) с низкоосновным ОХА.

Изобретение иллюстрируется следующими примерами.

Пример 1. В этом примере обусловлено влияние температуры реакции на процесс получения ПГХА.

В стеклянный реактор емкостью 300 см3, оборудованный обратным холодильником, загружают 50 г водного раствора ОХА производства ОАО «Химпром» (ТУ 2152-164-05763458-93) со следующими характеристиками:

Аl3+=9,0 мас.%; Сl- - 11,4 мас.%; Сl-/Аl3+=0,96 (атомн.); рН 2,5. Затем вносят 2,6 г алюминийсодержащего сплава в виде гранул (ТУ 48-0107-95-96) с содержанием в нем Аl=96,5 мас.%. Количество добавляемых гранул рассчитано из необходимого содержания Аl=12,8 мас.% в продукте реакции при условии его полного вступления в реакцию. Содержимое реактора нагревают соответственно при температурах 80, 85 и 90°С, контролируя периодически содержание Аl3+, Cl- и рН. Реакцию заканчивают при достижении в реакционной массе рН 4,1. Результаты эксперимента приведены в табл.1.

Таблица 1
Влияние температуры реакции на состав ПГХА

опыта
Температура,°С Содержание в продукте, мас.% Атомное отношение Сl-/Аl3+ Время реакции до
достижения
рН 4,1, час
Аl3+ Сl-
1 80 11,2 7,8 0,52 36
2 85 11,4 7,7 0,51 24
3 90 11,6 7,7 0,51 18

Из данных табл.1 следует, что продукт, соответствующий заявленному составу ПГХА, получается в данном интервале температур, однако продолжительность процесса относительно большая.

Пример 2. В этом примере обусловлено влияние количества алюминиевого сплава на протекание процесса получения ПГХА.

Реакцию проводят аналогично примеру 1, увеличивая количество алюминийсодержащего сплава против добавляемого расчетного для достижения содержания А13+ в конечном продукте 12,8 мас.%. Результаты эксперимента представлены в табл.2.

Таблица 2
Влияние избытка сплава на состав ПГХА*

опыта
Количество сплава, г Избыток сплава по отношению к расчетному Содержание в продукте, мас.% Атомное отношение Сl-/Al3+ Время реакции до
достижения
рН 4,1, час
Аl3+ Сl-
1 2,60 0 11,4 7,7 0,52 24
2 2,86 10 11,8 7,6 0,50 12
3 3,12 20 12,8 7,7 0,46 8
4 3,90 50 13,1 7,8 0,48 4

* Температура реакции 85°С.

Из данных табл.2 следует, что продукт реакции соответствует заявленному составу ПГХА, при этом увеличение избытка алюминийсодержащих гранул способствует сокращению времени реакции.

Пример 3. В этом примере обусловлено влияние времени реакции на состав и качество ПГХА. Реакцию проводят аналогично примеру 1 при температуре 85°С и 20%-ном избытке гранул алюминийсодержащего сплава против расчетного количества. Качество продукта оценивалось по содержанию в реакционной массе фракции, соответствующей ПГХА, которое определялось по данным фотонно-корреляционной спектроскопии. Данный метод достаточно известен, применяется для оценки дисперсного состава и определения молекулярных масс полимеров и наноразмерных чстиц [Спектроскопия оптического смещения и корреляции фотонов. Под ред. Г.Камминса и Э.Пайка. М.: Мир, 1978]. Для характеристики частиц ПГХА использовали гониометр рассеянного лазерного света с He-Ne лазером (λ=633 нм, 15 мВт). Анализ автокорреляционных функций флуктуации рассеянного света проводили с использованием программы DynaLS по методу кумулянтов с получением распределений рассеивающих частиц и значений коэффициентов диффузии, из которых рассчитывали радиусы гидродинамических сфер - Rh. Для несферических частиц ПГХА [Ф.С.Радченко, А.С.Озерин. Известия ВолгГТУ. Сер. Химия и технология элементоорганических мономеров и полимерных материалов. №1 (16). 2006. С.124] гидродинамический радиус может служить оценкой их размера в условиях сравнительных испытаний. В ходе эксперимента пробы реакционной массы, отобранные через определенные промежутки времени, анализировали на содержание Al3+ после чего разбавляли до концентрации Аl=l г/дл. Раствор обеспыливали 4-кратным фильтрованием через мембранный фильтр «Millipore» со средним размером пор 0,22 мкм и проводили анализ на лазерном спектрофотометре. Результаты эксперимента представлены в таблице 3 и на фиг.1.

Фиг.1. Гистограммы распределения частиц в растворе ПГХА с разным содержанием А13+ (мас.%): а) 9,0; б) 10,2; в) 11,5; г) 13,4.

Таблица 3
Влияние времени реакции на фракционный состав получаемого целевого тродукта. Температура реакции 85°С

опыта
Время реакции, час Содержание Al3+, мас.% Фракционный состав
Rh частиц, нм Содержание фракции (площадь пика), %
1 0 9,0 1,8 90,4
2 2 10,2 1,3
73,4
33,3
57,4
3 4 11,5 0,6
76,6
13,6
86,4
4 12 12,8 1,9
63,3
2,4
97,2

Таблица 4.
Свойства продуктов реакции (ПГХА), полученных на основе различных исходных веществ*

п/п
Исходный ОХА Al - содержащий компонент Продукт реакции (ПГХА)
производитель характеристики характеристики
[Аl-],
мас.%
[Cl-],
мас.%
Сl-/Al3+ атомное рН [Аl-],
мас.%
[Cl-],
мас.%
Сl/Al3+ атомное рН содержание фракции ПГХА (площадь пика), %, до/после реакции
1 ОАО «Химпром»
(Волгоград)
9,0 11,4 0,96 2,5 сплав AГ
ТУ 480107-95-96
12,8 7,9 0,46 4,2 0/97,2
la ТУ 2152-164-057-63458-93 1,0 алюминий, ч.
ГОСТ 1583-93
9,5 10,8 0,88 2,8 0/0
2 ОАО «Аурат»(Москва)
ТУ 6-09-05-1456-96
8,9 21,0 1,8 1,0 сплав AГ 11,8 8,1 0,52 4,1 0/74,5
3 ОАО «ВАКЗ»(Волжский)
ТУ 38303-029-96
7,0 9,8 1,1 2,0 сплав AГ 12,1 8,0 0,50 4,2 0/82,8
* Температура реакции - 85°
С, продолжительность процесса - 12 час.

Из результатов эксперимента следует, что исходный низкоосновный ОХА содержит преимущественно мелкие частицы с гидродинамическим радиусом 1,8 нм. По мере протекания реакции с алюминийсодержащим сплавом происходит рост частиц ПГХА и его основности и целевой продукт содержит преимущественно фракции ПГХА (до 97,2%) с крупными полимерными частицами с гидродинамическим радиусом 63,3-76,6 нм.

Пример 4. В данном примере обусловлено влияние вида исходного ОХА и его состава на свойства получаемого из него ПГХА. Эксперимент проводили аналогично примеру 3, используя в качестве исходного ОХА коммерческие продукты разных производителей. Целевой продукт реакции анализировали на содержание Al3+ и Сl- и подвергали анализу на фракционный состав на лазерном спектрофотометре. Результаты представлены в таблице 4 и на фиг.2.

Фиг.2. Гистограммы распределения частиц в продуктах реакции сплавов АГ с низкоосновным ОХА: а) производитель ОАО «Химпром», б) производитель ОАО «Аурат», в) производитель ОАО «ВАКЗ». Из данных эксперимента следует, что реакция низкоосновного ОХА с чистым алюминием практически не протекает. Использование же сплава АГ в реакции с низкоосновными ОХА различного состава (различных производителей) позволяет получать заявляемый продукт с содержанием фракции ПГХА до 97,2%.

Способ получения высокоосновного полигидроксохлорида алюминия из алюминийсодержащего сплава, отличающийся тем, что гранулы алюминийсодержащего сплава контактируют с водным раствором низкоосновного оксихлорида алюминия с концентрацией Al3+ от 7,0 до 9,0 мас.% и рН 1,0-2,5 при температуре 80-90°С до достижения рН в растворе 4,1-4,2 с образованием коллоидного раствора, содержащего до 97,2% высокоосновного полигидроксохлорида алюминия с атомным отношением Сl-/Аl3+=0,46÷0,52 и содержанием алюминия 11,8-12,8 мас.%.



 

Похожие патенты:
Изобретение относится к способам получения оксихлорида алюминия, используемого в качестве коагулянта при очистке воды и компонента парфюмерно-косметических изделий.

Изобретение относится к технологии неорганических веществ и может быть использовано при производстве коагулянтов для очистки воды хозяйственно-питьевого назначения, водоподготовки и очистки промышленных сточных вод, для сгущения осадков перед фильтрацией и в других технологических производственных процессах.

Изобретение относится к способам получения коагулянтов на основе основных хлоридов алюминия. .

Изобретение относится к технологии неорганических веществ и может быть использовано при получении коагулянтов, применяемых для очистки воды и промышленных стоков.
Изобретение относится к области неорганической химии, к средствам получения соединений алюминия, содержащих хлор. .
Изобретение относится к способам переработки шлаков плавки алюминия и его сплавов, а также к технологиям производства строительных материалов и неорганических веществ, в частности к технологии получения основных хлоридов алюминия.

Изобретение относится к технологии химической промышленности, а именно к способам получения основных хлоридов, т.е. .

Изобретение относится к способам получения основного хлорида алюминия, используемого в качестве коагулянта для очистки питьевой воды, компонента медицинских препаратов и парфюмерно-косметических изделий.

Изобретение относится к технологии получения коагулянтов для очистки вод, в частности для очистки промышленных сточных вод с использованием коагулянтов на основе гидрооксихлорида алюминия [Аl2(ОН)nСl6-n]
Изобретение может быть использовано в химической промышленности. Способ получения оксихлоридов алюминия включает обработку термохимически активированного гидроксида алюминия водным раствором соляной кислоты при нагреве. Термохимически активированный гидроксид алюминия предварительно подвергают гидратации раствором кислоты с кислородсодержащим анионом: азотной, серной, муравьиной, уксусной, щавелевой, с кислотным модулем 0,01-0,50 при температуре 50-95°С. Осадок после гидратации отделяют и добавляют к нему раствор соляной кислоты, поддерживая pН от 4 до 6 и температуру 50-98°С. Полученные оксихлориды алюминия выделяют в виде растворов или твердых веществ. Изобретение позволяет упростить получение высокоосновных оксихлоридов алюминия, исключив размол гидроксида алюминия. 6 з.п. ф-лы, 2 табл., 5 пр.

Изобретение относится к химической промышленности. Смешанный коагулянт из минерального сырья получают путем растворения бемит-каолинитового боксита в автоклаве соляной кислотой концентрацией 220 г/л при соотношении Т:Ж=1:6 в течение 1-3 часов в интервале температур 150-180°C. Изобретение позволяет повысить коагулирующие способности смешанного коагулянта - гидрооксихлорида алюминия и железа концентрации по Аl2O3 2,32-6,87 и по Fe2O3 0,94-1,02 мас.%, при очистке воды: по мутности и цветности. 2 ил., 6 табл.

Изобретения могут быть использованы в косметической области. Антиперспирантная композиция соли алюминия включает соль алюминия, причем соль алюминия (i) имеет молярное соотношение алюминия и хлорида, составляющее от 0,3:1 до 3:1; и (ii) содержит частицы катионов полигидроксиоксоалюминия, обнаруживаемых при 76 м.д. методом спектроскопии ЯМР 27Al, которые наблюдаются в спектре ЯМР 27Al в относительном количестве, превышающем количество любых других катионов полигидроксиоксоалюминия, обнаруживаемых методом спектроскопии ЯМР 27Al. Способ изготовления антиперспирантной композиции соли алюминия включает нагревание водного раствора, содержащего i) первую соль алюминия, с катионами полигидроксиоксоалюминия Al30, а нагревание осуществляют одним из следующих способов: a) при температуре от 100°C до 250°C в изохорическом реакторе или в условиях гидротермальной реакции в течение времени, достаточного для образования частиц катионов полигидроксиоксоалюминия, обнаруживаемых при 76 м.д. методом спектроскопии ЯМР 27Al или b) при 100°C с обратным холодильником в течение приблизительно 10 суток или более, необязательно в течение приблизительно 30 суток или более. Изобретения позволяют получить антиперспирантные активные ингредиенты, содержащие соединения алюминия, обладающие антиперспирантной эффективностью и высокой устойчивостью. 4 н. и 31 з.п. ф-лы, 4 ил., 2 табл., 1 пр.

Изобретение может быть использовано в химической промышленности, цветной металлургии и в области очистки сточных вод. Способ получения гидроксохлорида алюминия из бемит-каолинитовых бокситов и соляной кислоты включает растворение боксита в автоклавах соляной кислотой с концентрацией 200-300 г/л при соотношении Т:Ж=1:3-5 при температуре 150-225°C в течение 1-2 часов. Изобретение позволяет снизить энергозатраты, упростить процесс и увеличить степень извлечения в раствор оксида алюминия до 95,7%. 1 табл., 1пр.

Изобретение относится к области химической технологии, в частности к способу получения оксихлорида (основного хлорида) алюминия. Способ получения оксихлорида алюминия путем обработки гидроксида алюминия соляной кислотой при нагревании, отличающийся тем, что перед нагреванием добавляют неорганическое соединение - силикат щелочного металла или кремниевую кислоту в количестве от 0,005 до 0,8 моль SiO2 на 1 кг Al(ОН)3. Технический результат - получение оксихлорида алюминия с высоким мольным отношением алюминия к хлору, вплоть до 2:1, и основностью до 83%. 1 табл.

Группа изобретений относится к разработке антиперспирантных солей. Описан способ получения композиции соли алюминия с использованием сочетания основного органического буфера с источником ионов щелочноземельного металла, в молярном соотношении от 1:1 до 18:1. При этом антиперспирантная композиция содержит алюминийхлоридное соединение, имеющее молярное отношение алюминия к хлориду от 0,3:1 до 3:1, имеющую отношение интенсивности SEC-пика 4 к интенсивности SEC-пика 3, равное по меньшей мере 2, и основный органический буфер. Технических результатом изобретения является увеличение качества с помощью получения антиперспирантных солей, содержащих меньшие по размеру алюминий- и/или цирконийсодержащих частиц. 3 н. и 22 з.п. ф-лы, 2 табл., 8 пр.
Наверх