Способ приготовления строительных растворов и бетонов на их основе

Изобретение относится к производству строительных материалов и касается способа приготовления строительных растворов и бетонов на их основе. Смешивают цемент, негашеную известь, кварцевый песок, измельченное диатомитовое сырье и воду. Диатомитовое сырье используют в виде фракции 1-3 мм не менее мас.%: 50 и не более 5 мм - остальное. Смешивание осуществляют путем введения водной суспензии указанного сырья в предварительно приготовленную смесь цемента, извести, кварцевого песка и крупного заполнителя, при следующем соотношении компонентов, мас.%: цемент 20-30, негашеная известь 4-6, крупный заполнитель 0-20, кварцевый песок остальное, диатомитовое сырье 5-30 от массы цемента, вода до осадки конуса 1-9 см. Изобретение обеспечивает получение строительных смесей и бетонов на их основе с использованием существующих технологических линий, без снижения качества конечных изделий. 2 табл.

 

Изобретение относится к области строительных материалов, а именно к смесям, используемым при производстве строительных растворов и приготовлении бетонов на их основе.

Известен способ приготовления строительных растворов, заключающийся в размоле составляющих и приготовлении сухой смеси смешением следующих компонентов в соотношении: (объемные части)

- портландцемент любой разновидности - 1;

- активные и инертные тонкодисперсные кремнеземсодержащие материалы - золу уноса, керамическую пыль, пемзу, золы и шлаки ТЭЦ, стеклянный бой, отходы производства кирпича и других керамических изделий, мелкий кварцевый песок, микрокремнезем, кремнегель и т.п. материалы: от 1 до 2; суперпластификатор - (0,1…0,25) (1). Максимальное значение удельной поверхности полученного строительного раствора приведенного сырьевого состава составляет около 500 м2/кг.

Однако данный показатель, определяющий остальные физико-механические свойства строительных растворов, не всегда достаточен для приготовления бетонов и строительных изделий на их основе. Кроме того, недостатком является и сложность состава смеси. Исключение из состава смеси некоторых компонентов отрицательно сказывается на механических свойствах получаемого раствора.

Наиболее близким по назначению и технической сущности к заявляемому способу приготовления строительного раствора и бетонов на их основе является способ приготовления строительных растворов, применяемых в качестве связующего при кладке блоков из ячеистых бетонов, в котором готовится сухая строительная смесь, включающая цемент, известь, песок, а в качестве наполнителя добавляют предварительно измельченный и высушенный до постоянной массы диатомит при следующем соотношении компонентов, мас.%: цемент 25-30, известь 4-6, диатомит 20-30, песок остальное (2).

Недостатком известного способа приготовления строительного раствора является неоднородность смеси из-за присутствия в ней частиц диатомитовой глины различного размера, обусловленная измельчением массы диатомита до сушки. В процессе сушки возможно дополнительное слипание частиц глины. Наличие различных по размеру частиц диатомитовой глины в строительном растворе обуславливает его повышенную пластичность и ограничивает его использование, в частности, для приготовления бетонов.

Кроме того, необходимость контроля параметров процесса сушки диатомита, что определяется требованием высушивания диатомита до постоянства массы, накладывает ограничения на возможность использования способа в условиях строительной площадки.

Техническим результатом использования заявляемой сырьевой смеси для приготовления строительных растворов и бетонов на их основе является удешевление последних без снижения качества конечных изделий.

Поставленная задача достигается тем, что в способе приготовления строительной смеси, характеризующемся тем, что смешивают цемент, негашеную известь, кварцевый песок, измельченное диатомитовое сырье и воду, согласно изобретению, диатомитовое сырье используют в виде фракции 1-3 мм не менее мас.%: 50, не более 5 мм - остальное, смешивание осуществляют путем введения водной суспензии указанного сырья в предварительно приготовленную смесь цемента, извести, кварцевого песка и дополнительно крупного заполнителя при следующем соотношении компонентов, мас.%:

Цемент 20-30
Негашеная известь 4-6
Крупный заполнитель 0-20
Кварцевый песок остальное
Диатомитовое сырье 5-30 от массы цемента
Вода до осадки конуса 1-9 см

Высокую дисперсность частиц диатомитового сырья, которые поддаются классификации известными механическими способами, позволяя отобрать, например, посредством ряда сит, необходимую фракцию, в которой не менее 50% по массе составляют частицы, с размерами 1,0-3,0 мм и не более 5 мм - остальное, позволяет обеспечить измельчение диатомитового сырья после сушки. Помол высушенного диатомитового сырья производится до практической однородности частиц, что позволяет использовать весь объем диатомитового сырья.

Известно, что диатомитовые глины по зерновому составу относятся к пылеватым суглинкам, характеризующимся невысоким удельным сцеплением внутри зерновых элементов. Приготовление водной суспензии диатомита идет при активном механическом перемешивании, и намокшие частицы диатомитовой глины распадаются на более мелкие частицы, обеспечивая устойчивость суспензии, в которой преобладают частицы диатомита, эквивалентные или сопоставимые по размерам с частицами цемента, используемого для приготовления бетона. Экспериментально установлено, что частицы диатомита указанного диапазона размеров, при попадании в воду, распадаются на более мелкие фракции даже без перемешивания, что обусловлено пониженными прочностными характеристиками частиц перемятой при помоле глины. В частности, размеры частиц диатомита в водной суспензии составляют уже от 10 до 500 мкм, т.е. они эквивалентны или сопоставимы с размерами частиц цемента, используемого для приготовления бетона. Эквивалентные или сопоставимые с размерами частиц цемента частицы диатомита, являющегося активным минеральным материалом с большим содержанием аморфного кремнезема, обладающего пуццолановой активностью, наряду с частицами цемента вступают в реакции с гидроокисью кальция Са(ОН)2 извести, аналогичные реакциям, в которых участвуют частицы цемента. При этом вяжущие соединения образуются одновременно на поверхности микрочастиц диатомитового сырья и цемента. При введении водной суспензии диатомитового сырья в цементную смесь в процессе приготовления бетонов реактивные сферические микрочастицы диатомитового сырья, активизированные водой, окружают каждое зерно цемента, уплотняя цементный раствор, заполняя пустоты прочными продуктами гидратации и улучшая сцепление с заполнителями бетона. Происходит замещение частиц цемента активными частицами диатомитового сырья, что позволяет уменьшить процентное содержание цемента в составе бетонной смеси без понижения технических характеристик последней. Введение добавки диатомитового сырья в виде водной суспензии обеспечивает высокую степень смешивания компонентов, которой не удается достичь при «сухом» смешивании.

Достоинством заявляемого состава сырьевой смеси для приготовления строительных растворов и бетонов на их основе является, также, использование существующих технологических линий, практически без реконструкции: для приготовления водной суспензии диатомитового сырья устанавливается дополнительный смесительный узел, из которого в смеситель для приготовления бетонов, через бак объемной дозировки воды, насосом подается водная суспензия диатомитового сырья. При необходимости, дополнительный смесительный узел отключается и в технологическом цикле можно использовать воду.

Использование диатомитового сырья в водной суспензии, как источника кремнезема с высоким содержанием окиси кремния, известно, в частности в способе получения гидросиликата кальция (см. описание изобретения к авторскому свидетельству №268390 по Кл. С01b, опубликовано 09.07.1970 г. (3) и в способе получения связующих металлорганических соединений при изготовлении минераловатных или стекловолоконных материалов, приведенном в (4).

В способе получения гидросиликата кальция водная суспензия, с 20%-ным содержанием диатомита, смешивается с известковым молоком с 27,5% содержанием СаО и четырехкратным объемом воды, и к суспензии добавляют низкомолекулярную сульфонафтеновую кислоту. Реакцию образования гидросиликата кальция проводят в автоклаве при повышенной температуре, затем полученный продукт отфильтровывают, высушивают и измельчают, и в последующем полученный продукт используется в качестве наполнителя при вулканизации резиновых смесей, т.е. в конечном процессе связующее, полученное с добавлением сульфонафтеновой кислоты, распределяется по поверхности частиц продуктов резиновых смесей.

В способе получения связующих по патенту США №6866709 в водной суспензии кремнеземсодержащих пород, при интенсивном перемешивании последней, получают металлосодержащие кремнийорганические соединения, которые в последующем используют для изготовления теплоизоляционных материалов из минеральных волокон.

В обоих известных технических решениях процессы получения связующих и использования их для получения конечного продукта являются самостоятельными процессами, разнесены во времени, а частицы диатомитового сырья в водной суспензии не вступают в химические реакции с компонентами, являющимися основой для получения конечного продукта.

В заявляемом способе приготовления строительных растворов и бетонов на их основе, при приготовлении водной суспензии, в которой использована фракция диатомита с преобладающими по массе частицами с размерами от 1 до 3 мм, и с остальными частицами, размеры которых не превышают 5 мм, образуется устойчивая суспензия с размерами частиц от 10 до 500 мкм, т.е. эквивалентными или сопоставимыми с размерами частиц цемента, и, при использовании водной суспензии диатомита для затворения бетонной смеси, связующее образуется на поверхности микрочастиц и цемента и диатомита, что позволяет использовать диатомит в качестве заместителя цемента. Пуццолановая реакция на поверхности частиц цемента и кремнезема приводит к образованию геля с высоким содержанием связующего и связанной воды, повышая пластичность приготовленной бетонной смеси. При этом, не смотря на явную экономию цемента в бетонном тесте, технические характеристики получаемого бетона не ухудшаются. Диатомитовая добавка с размерами частиц, эквивалентными или сопоставимыми с размерами частиц цемента, вводимая в виде водной суспензии, обеспечивает достаточное количество вяжущих соединений, определяющих технические характеристики получаемого бетонного камня.

Предлагаемый способ приготовления строительного бетона был реализован в лабораторных условиях. Для приготовления опытных образцов бетонных смесей марок от М50 до М300 использовались портландцементы марок М300, М400 и М500. В качестве диатомитового сырья брали природное сырье - диатомит Камышловского месторождения. По химическому составу природные диатомиты (в частности, диатомиты Камышловского месторождения, Свердловская область) содержат от 65 до 85% SiO2, в том числе до 39-55% аморфного кремнезема; от 4,3 до 15,7% - Al2O3; от 2 до 5,3% Fe2O3; от 0,15 до 1,8% - СаО и от 1 до 2% окислов щелочных металлов: Na2O, K2O, что приближает диатомиты по составу к микрокремнеземам, получаемым техногенным путем.

Экспериментально установлено, что при содержании диатомита в водной суспензии от 5 до 30% от массы цемента на сухое вещество обеспечивается изменение соотношения CaO/SiO2 от 0,9 до 1,3, что определяет активизацию реакций гидратации. Уровень водородного показателя рН воды в порах бетона на обычном портландцементе равен 14. При добавлении даже умеренного количества аморфного кремнезема он очень быстро снижается до 13. При добавлении диатомита в виде водной суспензии, содержащей свыше 15% от массы цемента, окись кремния забирает из воды в порах практически все ионы окиси кальция, понижая уровень рН до 12,5. При добавлении диатомита около 25-30% окись кремния нейтрализует всю свободную известь, освобожденную силикатами портландцемента. Дальнейшее увеличение содержания диатомитового сырья нецелесообразно из-за законченности реакций нейтрализации гидроокиси кальция.

Опытным путем также установлено, что измельчение диатомитового сырья в большей степени нецелесообразно из-за резкого увеличения энергетических затрат, а при отборе фракций с частицами больших размеров снижается пуццолановая активность добавки.

Сухие смеси из цемента, извести и песка затворялись водной суспензией диатомита, для приготовления которой диатомитовое сырье подвергалось сушке и помолу, и для приготовления суспензии использовались фракции, в которых содержание частиц с размерами от 1 до 3 мм составляло не менее, мас.%, 50, а остальное - частицы с размерами не более 5 мм. Такая классификация частиц диатомитового сырья обеспечивает эквивалентность или сопоставимость частиц, получаемых в водной суспензии, с размерами частиц цемента, используемого для приготовления определенной бетонной смеси.

Пример поясняется таблицами (Приложение 1 к описанию и Приложение 2), в которых приведены результаты лабораторных испытаний различных марок легких бетонов, используемых в несущих конструкциях промышленных и гражданских зданий и изготавливаемых посредством заявленного способа.

Приведенные в Приложении 1 данные относятся к бетонным смесям на песке с Мк=2-2,5, без крупного заполнителя (при нулевом содержании крупного заполнителя) и с нормальной густотой 26-28%, обеспечивающей осадку конуса в пределах 1-9 см.

Средняя масса высушенного бетонного камня составила 1000 кг/м3.

В Приложении 2 приведены примеры смесей с крупным заполнителем при максимальном его содержании в бетонном камне. При составлении смесей использовались природные крупные заполнители (пемза, туф, пористые известняки и др.), с удельным весом около 1500 кг/м3. Плотность образцов полученных бетонов приведена в таблице.

Удобоукладываемость опытных образцов бетонных смесей составляла 5-10 сек.

При подборе состава бетона оптимальная дозировка диатомита устанавливалась экспериментально в указанном диапазоне соотношений цемента и диатомитового сырья, вводимого в виде водной суспензии.

Анализ приведенных в таблицах данных позволяет сделать вывод об обеспечении полученных составов бетонов необходимой удобоукладываемостью и подвижностью при значительной экономии цемента.

Для примера, только в Свердловской области, при использовании диатомитов Камышловского месторождения можно достичь экономии до 400-450 тысяч тонн цемента в год, т.е. высвободить мощности Невьянского цементного завода.

Источники информации

1. Ю.М.Баженов, В.Ф.Коровяков, Г.А.Денисов - Технология сухих строительных смесей, М., 2003, Изд. Ассоциации строительных вузов, стр.20-25, 48.

2. Описание к патенту РФ №2297991 по Кл. С04В 28/02, опубликовано 27.04.2007 г. (прототип).

3. Описание изобретения к авторскому свидетельству №268390 по Кл. С01b, опубликовано 09.07.1970 г.

4. Описание изобретения к патенту США №6866709 по Кл. НКИ 106/38.3; 106/600; 106/602; 106/644; 106/711; 501/80, МКл. С03С 25/42, опубликовано 30.04.2001 г.

Приложение 1 к описанию. Примеры сырьевой смеси и физико-механические свойства полученных образцов бетонных смесей без крупного заполнителя.
Марка портландцемента по ГОСТ 10178 (УД. вес кг/м3) Класс (Марка) бетона / Плотность образца после набора твердости (кг/м3)/ Расход цемента без добавления диатомита и крупного заполнителя кг/м3 (мас.%) Оптимальный вес диатомита (% массовый на сухое вещество цемента) Расход цемента при использовании диатомита кг/м3 (мас.%) Расход негашеной извести, Уд. вес 1000 кг/м3 (мас.%) Расход песка Мк 2-2,5 Уд. вес 1500 кг/м3 Расход воды (мас.% на сухой объем цемента) Осадка конуса, см
М-300 В3,5 (М50) 265 (26,5) 5,0 240 (24,0) 40 (4,0) 700-650 40-45 1-6
(1100) /1000/ 255 (25,5) 7,5 220 (22,0) 50 (5,0) 710-660
245 (24,5) 10,0 210 (21,0) 60 (6,0) 705-665
М-400 В7,5 (М100) 245 (24,5) 10,0 190 (19,0) 40 (4,0) 750-755 40-45 1-6
(1200) /1000/ 235 (23,5) 15,0 180 (18,0) 50 (5,0) 740-745
200 (20,0) 20,0 160 (16,0) 60 (6,0) 745-750
В10 (М150) 265 (26,5) 20,0 210 (21,0) 40 (4,0) 705-710 45-50 5-9
/1000/ 245 (24,5) 22,5 200 (20,0) 50 (5,0) 705-710
235 (23,5) 25,0 170 (17,0) 60 (6,0) 715-720
В15 (М200) 310 (31) 25,0 220 (22,0) 40 (4,0) 680-685 45-50 5-9
/1000/ 285 (28,5) 27,5 210 (21,0) 50 (5,0) 680-685
270 (27,0) 30,0 200 (20,0) 60 (6,0) 680-685
В20 (М250) 355 (35,5) 25,0 260 (26,0) 40 (4,0) 630-640 45-50 5-9
/1000/ 325 (32,5) 27,5 240 (24,0) 50 (5,0) 640-645
305 (30,5) 30 210 (21,0) 60 (6,0) 660-670
В22,5 (М300) 400 (40,0) 25,0 280 (28,0) 40 (4,0) 605-610 45-50 5-9
/1000/ 365 (36,5) 27,5 260 (26,0) 50 (5,0) 615-620
345 (34,5) 30,0 210 (21,0) 60 (6,0) 660-670
М-500 В15 (М200) 235 (23,5) 20,0 190 (19,0) 40 (4,0) 730-735 45-50 5-9
(1300) /1000/ 210 (21,0) 22,5 170 (17,0) 50 (5,0) 740-745
200 (20,0) 25,0 150 (15,0) 60 (6,0) 745-750
В20 (М250) 275 (27,5) 25,0 200 (20,0) 40 (4,0) 710-715 45-50 5-9
/1000/ 250 (25,0) 27,5 180 (18,0) 50 (5,0) 710-715
235 (23,5) 30,0 170 (17,0) 60 (6,0) 715-720
В22,5 (М300) 315 (31,5) 25,0 210 (21,0) 40 (4,0) 690-700 45-50 5-9
/1000/ 290 (29,0) 27,5 200 (20,0) 50 (5,0) 690-700
270 (27,0) 30,0 190 (19,0) 60 (6,0) 690-700

Приложение 2 к описанию. Примеры сырьевой смеси и физико-механические свойства полученных образцов бетонных смесей с крупным заполнителем.
Марка портландцемента по ГОСТ 10178 (уд. вес кг/м3) Класс (Марка) бетона /Плотность образца после набора твердости (кг/м3)/ Расход цемента при добавлении диатомита, кг/м3 Оптимальный вес диатомита кг (% массовый на сухое вещество цемента) Расход негашеной извести, Уд. вес 1000 кг/м3 кг, (мас.%) Расход песка Мк 2-2,5 Уд. вес 1500 кг/м3 Расход крупного заполнителя Уд. Вес 1500 кг/м3 кг/м3 (мас.%) Расход воды (мас.% на сухой объем цемента) Осадка конуса, см
М-300 В3,5 (М50) 285 15,0 (5,0) 60 (4,0) 840-830 300 (20,0) 40-45 1-6
(1100) /1500/ 277,5 22,5 (7,5) 75 (5,0) 825-820
270 30,0 (10,0) 80 (6,0) 820-815
М-400 (1200) В7,5 (М100) 225 25 (10,0) 60 (4,0) 890-860 300 (20,0) 40-45 1-6
/1500/ 212,5 37,5 (15,0) 75 (5,0) 875-870
200 50,0 (20,0) 80 (6,0) 870-860
В10 (М150) 288 32,0 (10,0) 64 (4,0) 900-890 320 (20,0) 50-55 5-9
/1600/ 272 48,0 (15,0) 80 (5,0) 885-880
256 64,0 (20,0) 96 (6,0) 880-870
В15 (М200) 306 34,0 (10,0) 68 (4,0) 960-950 340 (20,0) 50-55 5-9
/1700/ 289 51,0 (15,0) 85 (5,0) 940-930
272 68,0 (20,0) 102 (6,0) 920-910
В22,5 (М300) 324 36,0 (10,0) 72 (4,0) 1010-1000 360 (20,0) 50-55 5-9
/1800/ 316 54,0 (15,0) 90 (5,0) 990-980
288 72,0 (20,0) 102 (6,0) 970-960
М-500 В15 (М200) 214 25,0 (10,0) 64 (4,0) 980-970 320 (20,0) 60-65 5-9
(1300) /1600/ 206 40,0 (15,0) 80 (5,0) 960-950
197 49,0 (20,0) 96 (6,0) 940-930
В20 (М250) 235 26,5 (10,0) 68 (4,0) 1020-1010 340 (20,0) 60-65 5-9
/1700/ 207 39,0 (15,0) 85 (5,0) 1010-1000
197 49,0 (20,0) 102 (6,0) 1000-990
В22,5 (М300) 276 36 (10,0) 72 (4,0) 1050-1040 360 (20,0) 60-65 5-9
/1800/ 235 54 (15,0) 90 (5,0) 1060-1050
221 72 (20,0) 102 (6,0) 1040-1030
Природные крупные заполнители (пемза, туф, пористые известняки и др.).

Способ приготовления строительной смеси, характеризующийся тем, что смешивают цемент, негашеную известь, кварцевый песок, измельченное диатомитовое сырье и воду, отличающийся тем, что диатомитовое сырье используют в виде фракции 1-3 мм не менее мас.%: 50, не более 5 мм - остальное, смешивание осуществляют путем введения водной суспензии указанного сырья в предварительно приготовленную смесь цемента, извести, кварцевого песка и дополнительно крупного заполнителя при следующем соотношении компонентов, мас.%:

Цемент 20-30
Негашеная известь 4-6
Крупный заполнитель 0-20
Кварцевый песок Остальное
Диатомитовое сырье 5-30 от массы цемента
Вода До осадки конуса 1-9 см



 

Похожие патенты:

Изобретение относится к составу вяжущего и способу его приготовления и может быть использовано для изготовления стеновых изделий из легкого бетона и теплоизоляционных изделий для стен и других конструкций.
Изобретение относится к области строительных материалов, а именно к добавкам, используемым при производстве гипсовых вяжущих, строительных растворов и бетонов на их основе.

Вяжущее // 1303579
Изобретение относится к промышленности строительных материалов и может быть использовано для приготовления смешанного вяжущего на основе гипса. .

Изобретение относится к области промышленности строительных материалов и может быть использовано при производстве вяжущих веществ на основе гипсовых вяжущих и портландцемента

Изобретение относится к строительным материалам и может быть использовано при производстве перегородочных плит и панелей, архитектурных, звукопоглощающих и других изделий, вентиляционных блоков, строительных растворов для внутренних частей здания, сухой штукатурки
Изобретение относится к области строительных материалов и может использоваться при производстве гипсовых вяжущих, строительных растворов, бетонов и изделий на их основе
Изобретение относится к области строительных материалов, а именно к добавкам, используемым при производстве гипсовых вяжущих, строительных растворов и бетонов на их основе
Изобретение относится к технологии строительных материалов, в частности сухих строительных смесей, например вяжущих с активными минеральными добавками, в которых последние представлены пуццоланом
Изобретение относится к способу производства водостойких гипсовых материалов

Изобретение относится к строительным материалам и может быть использовано при производстве перегородочных плит и панелей, архитектурных, звукопоглощающих и других изделий, вентиляционных блоков, строительных растворов для внутренних частей здания, сухой штукатурки и гипсоцементно-волокнистых композиций. Технический результат заключается в удлинении сроков схватывания смеси, придании ей самоуплотняющейся способности, повышении прочности на изгиб и сжатие, повышении коэффициента размягчения и снижении водопоглощения гипсоцементно-пуццолановой композиции. Гипсоцементно-пуццолановая композиция включает портландцемент, полуводный гипс, пуццолановую добавку - метакаолин, в качестве модифицирующей добавки - композицию состава, мас.%: карбоксилатный полиэфир «Ethacryl™ HF» - 76,7-77,1, регулятор сроков схватывания и твердения «Бест-ТБ» - 17,7-18,1, полиметилгидросилоксан - 5-5,4, при следующем соотношении компонентов, мас.%: полуводный гипс 53,5-53,8, портландцемент 14-14,14, модифицирующая добавка 2,6-3,0,метакаолин 1,3-1,44,вода остальное. 2 табл.

Изобретение относится к производству вяжущих материалов, может быть использовано для получения общестроительных цементов. Технический результат заключается в расширении ассортимента широкодоступных активных минеральных добавок для производства цемента, расширении сырьевой базы эффективных, широкодоступных активных минеральных добавок для производства цемента, повышении качества и снижении себестоимости производства цемента, утилизации крупнотоннажных техногенных отходов ТЭЦ и разработке способа приготовления широкодоступной активной минеральной добавки. Активная минеральная добавка для цемента содержит низкокальциевые золошлаковые отходы ТЭЦ с содержанием оксида алюминия 17,75% и гипсосодержащий компонент, в качестве которого используют побочный продукт производства фосфорной кислоты фосфогипс, при следующем соотношении компонентов, мас. %: золошлаковые отходы - 66,7; фосфогипс - 33,3. 2 н.п. ф-лы, 6 табл.

Изобретение относится к геополимерным композициям на основе алюмосиликатов. Алюмосиликатная геополимерная композиция, содержащая продукт взаимодействия воды, химического активатора из группы, состоящей из соли щелочного металла, основания щелочного металла и их смесей, и вяжущего реакционно-способного материала, содержащего термоактивированный алюмосиликатный минерал - ТААСМ, цемент на основе сульфоалюмината кальция - САК и сульфат кальция из группы, состоящей из дигидрата сульфата кальция, гемигидрата сульфата кальция, безводного сульфата кальция и их смесей, где массовое отношение химического активатора к указанному вяжущему материалу составляет от примерно 1 до примерно 6:100, указанный вяжущий материал содержит: от примерно 33 до примерно 97 масс.% ТААСМ, от примерно 1 до примерно 40 масс.% цемента на основе САК, от примерно 1 до примерно 40 масс.% сульфата кальция. Способ получения указанной выше композиции, включающий взаимодействие смеси: воды, химического активатора, указанного вяжущего материала. Смесь для получения указанной выше композиции, содержащая цемент на основе САК, ТААСМ и указанные сульфат кальция и активатор, при массовом отношении цемента на основе САК к ТААСМ от примерно 1 до примерно 100:100; и массовом отношении сульфата кальция к цементу на основе САК от примерно 2 до примерно 100:100. Вяжущий реакционно-способный материал для получения указанной выше композиции, содержащий: от примерно 60 до примерно 85 масс.% ТААСМ, где указанный ТААСМ содержит зольную пыль класса С, от примерно 8 до примерно 30 масс.% цемента на основе САК и от примерно 4,0% до примерно 15% по массе сульфата кальция и указанный химический активатор. Изобретение развито в зависимых пунктах. Технический результат - улучшение размерной устойчивости и срока службы. 4 н. и 11 з.п. ф-лы, 59 ил., 117 табл., 31 пр.,
Наверх