Способ очистки теплообменной поверхности рекуперативного теплообменника, входящего в блок низкотемпературной сепарации природного газа, от твердых парафинов и установка для его осуществления

Изобретение относится к газоперерабатывающей промышленности, а именно к способам очистки зашлакованной поверхности теплообменной аппаратуры, используемой при низкотемпературной сепарации природного газа. Способ осуществляется путем пропарки зашлакованной поверхности рекуперативного теплообменника насыщенным водяным паром, причем начало и длительность пропарки определяют по двум эмпирическим уравнениям. Установка для осуществления способа состоит из промысловой котельной 1, соединенной через автоматический клапан входа водяного пара 3 с линией входа природного газа высокого давления 4 в рекуперативный теплообменник 7. Автоматический клапан выхода водяного пара 11 подсоединен к линии выхода природного газа высокого давления 9 из рекуперативного теплообменника. Установка содержит также автоматические клапаны входа 2 и выхода 10 природного газа высокого давления из рекуперативного теплообменника, а также автоматические клапаны входа 8 и выхода 5 природного газа низкого давления из рекуперативного теплообменника. Положительный эффект: сокращение времени пропарки зашлакованной поверхности, повышение эффективности работы установки низкотемпературной сепарации природного газа. 2 н. и 2 з.п. ф-лы, 1 ил., 1 табл.

 

Изобретение относится к способам очистки зашлакованнной поверхности теплообменной аппаратуры, используемой при низкотемпературной сепарации природного газа в газоперерабатывающей промышленности.

Известен способ переработки природного газа методом низкотемпературной сепарации (НТС), включающий охлаждение газа в рекуперативном теплообменнике, затем охлаждение в дроссельном вентиле и последующий нагрев в рекуперативном теплообменнике (А.В.Язик. Системы и средства охлаждения природного газа. М.: Недра, 1986, 201 с.).

Недостатком известного способа является то, что при использовании природного газа, содержащего твердые парафины, происходит зашлаковывание поверхности теплообмена рекуперативного теплообменника твердыми парафинами и снижение эффективности в работе установки низкотемпературной сепарации (С.А.Мальянов, Н.Н.Ивановский. Оптимизация работы установки низкотемпературной сепарации природного газа, содержащего парафины. Научная Мысль Кавказа. Северо-Кавказский Научный центр Высшей школы. Приложение N13(97), 2006 г., 339 с.)

Наиболее близким по технической сущности и достигаемому результату к заявляемому является способ очистки теплообменной поверхности рекуперативного теплообменника от твердых парафинов с помощью пропарки и продувки зашлакованной поверхности насыщенным водяным паром при температуре Т=100°С. Поскольку температура плавления твердых парафинов не превышает 60°С, при пропарке и продувке зашлакованной поверхности теплообмена водяным паром при температуре Т=100°С происходит их расплавление и удаление, после чего эффективность рекуперативного теплообменника восстанавливается. (С.А.Мальянов, Н.Н.Ивановский. Оптимизация работы установки низкотемпературной сепарации природного газа, содержащего парафины. Научная Мысль Кавказа. Северо-Кавказский Научный центр Высшей школы. Приложение N13(97), 2006 г., 339 с.)

Недостатком указанного способа является то, что заранее неизвестно время, за которое происходит зашлаковывание поверхности теплообмена рекуперативного теплообменника твердыми парафинами и неизвестно время, за которое происходит их расплавление и удаление из рекуперативного теплообменника с помощью водяного пара.

Задачей настоящего изобретения является регламентация времени, за которое происходит зашлаковывание поверхности теплообмена рекуперативного теплообменника твердыми парафинами, и регламентация времени, за которое происходит их расплавление и удаления из рекуперативного теплообменника.

Сущность настоящего изобретения заключается в том, что в известном способе очистки теплообменной поверхности рекуперативного теплообменника, входящего в блок низкотемпературной сепарации природного газа, от твердых парафинов, включающем пропарку и продувку зашлакованной поверхности насыщенным водяным паром, согласно изобретению начало пропарки и продувки определяют по эмпирическому уравнению

τ1=8,3·L·(l/L)2,52,

где τ1 - время (дней), за которое зашлаковывается твердыми парафинами заданная длина теплообменной трубы l (м) рекуперативного теплообменника;

L - штатная длина теплообменной трубы рекуперативного теплообменника, м.

При этом время пропарки и продувки рекуперативного теплообменника определяют по эмпирическому уравнению

τ2=1,62·l·(100/t)1,45,

где τ2 - время пропарки и продувки рекуперативного теплообменника, час;

l - длина зашлакованной части теплообменной трубы рекуперативного теплообменника, м;

t - температура насыщенного водяного пара, °С.

Причем пропарку и продувку рекуперативного теплообменника выполняют путем подачи насыщенного водяного пара внутрь теплообменных труб на стороне потока природного газа высокого давления.

Известна установка низкотемпературной сепарации природного газа (НТС), состоящая из сепаратора природного газа высокого давления, дроссельного вентиля, рекуперативного теплообменника и сепаратора природного газа низкого давления. (А.В.Язик. Системы и средства охлаждения природного газа. М.: Недра, 1986, 201 с.).

Недостатком известной установки НТС является то, что при использовании природного газа, содержащего твердые парафины, происходит зашлаковывание поверхности теплообмена рекуперативного теплообменника и снижение эффективности в работе установки низкотемпературной сепарации.

Наиболее близкой по технической сущности и достигаемому результату к заявляемой является передвижная парогенераторная установка для пропарки и продувки зашлакованной поверхности теплообмена рекуперативного теплообменника насыщенным водяным паром при температуре Т=100°С, смонтированная на грузовом автомобиле (С.А.Мальянов, Н.Н.Ивановский. Оптимизация работы установки низкотемпературной сепарации природного газа, содержащего парафины. Научная Мысль Кавказа. Северо-Кавказский научный центр Высшей школы. Приложение N13(97), 2006 г., 339 с.).

Недостатком известной установки является то, что использование передвижного парогенератора в полевых условиях вызывает значительные трудности, связанные с отключением штатной системы природного газа и подсоединением парогенератора, а также то, что по правилам техники безопасности на передвижном парогенераторе температура насыщенного водяного пара ограничивается величиной Т=100°С.

Задачей настоящего изобретения является разработка стационарной и простой в эксплуатации установки для пропарки и продувки зашлакованной поверхности теплообмена рекуперативного теплообменника насыщенным водяным паром с температурой до 150°С, разрешенной по правилам техники безопасности к использованию в промысловых котельных.

Сущность настоящего изобретения заключается в том, что известная установка для пропарки и продувки зашлакованной поверхности теплообмена рекуперативного теплообменника насыщенным водяным паром согласно изобретению состоит из промысловой котельной, рекуперативного теплообменника, автоматических клапанов и таймера, причем промысловая котельная соединена с рекуперативным теплообменником через автоматический клапан, подсоединенный к таймеру, выход водяного пара из рекуперативного теплообменника соединен с автоматическим клапаном, подсоединенным к таймеру, на линиях входа природного газа высокого и низкого давления в рекуперативный теплообменник и выхода природного газа высокого и низкого давления из рекуперативного теплообменника установлены автоматические клапаны, подсоединенные к таймеру.

Изобретение поясняется принципиальной схемой для осуществления способа. Установка состоит из промысловой котельной 1, соединенной через автоматический клапан входа водяного пара 3 с линией входа природного газа высокого давления 4 в рекуперативный теплообменник 7. Автоматический клапан выхода водяного пара 11 подсоединен к линии выхода природного газа высокого давления 9 из рекуперативного теплообменника. Кроме того, на схеме представлены автоматические клапаны входа 2 и выхода 10 природного газа высокого давления из рекуперативного теплообменника, а также автоматические клапаны входа 8 и выхода 5 природного газа низкого давления из рекуперативного теплообменника. Также показана теплообменная труба теплообменника 6, на которой происходит шлакование твердых парафинов.

Способ осуществляется следующим образом. Задаемся длиной шлакования l (м) теплообменной трубы рекуперативного теплообменника. Оптимальной является длина l (м), равная 0,25 от штатной длины L (м) теплообменной трубы. При выборе большей длины l увеличивается период времени, при котором рекуперативный теплообменник работает при пониженном отборе газоконденсата и эффективность установки НТС пониженная. При выборе меньшей длины l возникает необходимость в более частой пропарке рекуперативного теплообменника, что требует повышенного расхода водяного пара и повышенного времени простоя установки НТС.

Затем по уравнению (1) определяют временя τ1 (дней), за которое зашлаковывается твердыми парафинами заданная длина теплообменной трубы l (м) и по уравнению (2) определяют время пропарки и продувки рекуперативного теплообменника τ2 (час), необходимое для того, чтобы очистить зашлакованную длину рекуперативного теплообменника от твердых парафинов. На эти периоды времени настраивается таймер, обеспечивающий работу установки в штатном режиме охлаждения природного газа и в режиме пропарки и продувки рекуперативного теплообменника.

При штатной работе установки НТС автоматические клапаны входа природного газа высокого 2 и низкого 8 давления в рекуперативный теплообменник и выхода природного газа высокого 10 и низкого 5 давления из рекуперативного теплообменника открыты, автоматические клапаны входа водяного пара 3 и выхода водяного пара 11 закрыты. После окончания периода шлакования рекуперативного теплообменника твердыми парафинами наступает этап пропарки и продувки зашлакованной поверхности теплообмена рекуперативного теплообменника насыщенным водяным паром при температуре Т=150°С. В этот момент по сигналу таймера происходит закрытие автоматических клапанов входа природного газа высокого 2 и низкого 8 давления в рекуперативный теплообменник и выхода природного газа высокого 10 и низкого 5 давления из рекуперативного теплообменника, после чего открываются автоматические клапаны входа водяного пара 3 и выхода водяного пара 11. По окончанию периода пропарки и продувки зашлакованной поверхности теплообмена рекуперативного теплообменника по сигналу таймера происходит закрытие автоматических клапанов входа водяного пара 3 и выхода водяного пара 11 и открытие автоматических клапанов входа природного газа высокого 2 и низкого 8 давления и выхода природного газа высокого 10 и низкого 5 давления. Работа установки НТС возобновляется в штатном режиме.

Для сравнения известного и предлагаемого способов рассмотрены примеры 1-6, а результаты приведены в таблице.

Пример 1. Известный способ пропарки и продувки зашлакованной поверхности теплообмена рекуперативного теплообменника насыщенным водяным паром при температуре Т=100°С, штатной длине теплообменной трубы рекуперативного теплообменника L=3 м и отношении l/L=0,25.

Время шлакования поверхности теплообмена рекуперативного теплообменника и время их пропарки и продувки определить невозможно.

Пример 2. Предлагаемый способ пропарки и продувки зашлакованной поверхности теплообмена рекуперативного теплообменника насыщенным водяным паром при температуре Т=100°С, штатной длине теплообменной трубы рекуперативного теплообменника L=3 м и отношении l/L=0,25.

Получаем по уравнениям (1) и (2):

Время шлакования τ1=8,3·L·(l/L)2,52=0,747 суток

Время пропарки и продувки τ2=1,62·1,5·(100/100)1,45=4,86 часа

Пример 3. Предлагаемый способ пропарки и продувки зашлакованной поверхности теплообмена рекуперативного теплообменника насыщенным водяным паром при температуре Т=150°С, штатной длине теплообменной трубы рекуперативного теплообменника L=3 м и отношении l/L=0,25.

Получаем по уравнениям (1) и (2):

Время шлакования τ1=8,3·L·(l/L)2,52=0,747 суток.

Время пропарки и продувки τ2=1,62·1,5·(100/150)1,45=1,31 часа.

Пример 4. Предлагаемый способ пропарки и продувки зашлакованной поверхности теплообмена рекуперативного теплообменника насыщенным водяным паром при температуре Т=150°С, штатной длине теплообменной трубы рекуперативного теплообменника L=6 м и отношении l/L=0,25.

Получаем по уравнениям (1) и (2):

Время шлакования τ1=8,3·L·(l/L)2,52=1,494 суток.

Время пропарки и продувки τ2=1,62·l·(100/t)1,45=2,62 часа.

Пример 5. Предлагаемый способ пропарки и продувки зашлакованной поверхности теплообмена рекуперативного теплообменника насыщенным водяным паром при температуре Т=150°С, штатной длине теплообменной трубы рекуперативного теплообменника L=12 м и отношении l/L=0,25.

Получаем по уравнениям (1) и (2):

Время шлакования τ1=8,3·12·(l/L)2,52=2,988 суток.

Время пропарки и продувки τ2=1,62·6·(100/t)1,45=5,24 часа.

Пример 6. Предлагаемый способ пропарки и продувки зашлакованной поверхности теплообмена рекуперативного теплообменника насыщенным водяным паром при температуре Т=150°С, штатной длине теплообменной трубы рекуперативного теплообменника L=12 м и отношении l/L=0,5.

Получаем по уравнениям (1) и (2):

Время шлакования τ1=8,3·12·(l/L)2,52=17,32 суток.

Время пропарки и продувки τ2=1,62·6·(100/t)1,45=10,48 часа.

Из рассмотрения примеров 2 и 3 видно, что увеличение температуры водяного пара со 100 до 150°С позволяет значительно снизить время пропарки и продувки рекуперативного теплообменника.

Из рассмотрения примеров 5 и 6 видно, что увеличение отношения 1/L с 0,25 до 0,5 значительно увеличивает время шлакования и время пропарки и продувки рекуперативного теплообменника.

Предлагаемый способ по сравнению с известным позволяет нормировать время шлакования поверхности теплообмена рекуперативного теплообменника твердыми парафинами и необходимое время их пропарки и продувки, а также позволяет повысить температуру пропарки зашлакованной поверхности, в результате чего сокращает время пропарки и продувки зашлакованной поверхности теплообмена рекуперативного теплообменника, повышается эффективность работы установки НТС. Кроме того, предлагаемая установка является стационарной и простой в эксплуатации, в результате чего упрощается ее эксплуатация.

Таблица
Пара-
метры
l/L L, м l, м t° C τ1, дней τ2, час
Пример 1 0,25 3,0 0,75 100 - -
Пример 2 0,25 3,0 0,75 100 0,747 4,86
Пример 3 0,25 3,0 0,75 150 0,747 1,31
Пример 4 0,25 6,0 1,5 150 1,494 2,62
Пример 5 0,25 12,0 3,0 150 2,988 5,24
Пример 6 0,5 12,0 6,0 150 17,32 10,48

1. Способ очистки теплообменной поверхности рекуперативного теплообменника, входящего в блок низкотемпературной сепарации природного газа, от твердых парафинов, включающий пропарку и продувку зашлакованной поверхности насыщенным водяным паром, отличающийся тем, что начало пропарки и продувки определяют по эмпирическому уравнению
τ1=8,3·L·(l/L)2,52,
где τ1 - время (дней), за которое зашлаковывается твердыми парафинами заданная длина теплообменной трубы l (м) рекуперативного теплообменника;
L - штатная длина теплообменной трубы рекуперативного теплообменника, м.

2. Способ по п.1, отличающийся тем, что время пропарки и продувки рекуперативного теплообменника определяют по эмпирическому уравнению
τ2=1,62·l·(100/t)1,45,
где τ2 - время пропарки и продувки рекуперативного теплообменника, ч;
l - длина зашлакованной части теплообменной трубы рекуперативного теплообменника, м;
t - температура насыщенного водяного пара, °С.

3. Способ по п.1, отличающийся тем, что пропарку и продувку рекуперативного теплообменника выполняют путем подачи насыщенного водяного пара внутрь теплообменных труб на стороне потока природного газа высокого давления.

4. Установка очистки теплообменной поверхности рекуперативного теплообменника, входящего в блок низкотемпературной сепарации природного газа, от твердых парафинов, отличающаяся тем, что установка состоит из промысловой котельной, рекуперативного теплообменника, автоматических клапанов и таймера, причем промысловая котельная соединена с рекуперативным теплообменником через автоматический клапан, подсоединенный к таймеру, выход водяного пара из рекуперативного теплообменника соединен с автоматическим клапаном, подсоединенным к таймеру, на линиях входа природного газа высокого и низкого давления в рекуперативный теплообменник и выхода природного газа высокого и низкого давления из рекуперативного теплообменника установлены автоматические клапаны, подсоединенные к таймеру.



 

Похожие патенты:

Изобретение относится к способу очистки труб теплообменника с помощью струйного средства и к устройству для осуществления способа. .

Изобретение относится к установкам для очистки поверхностей нагрева от наружных отложений и может быть использовано в теплоэнергетике, металлургии, химической и других отраслях промышленности, где существует проблема очистки теплообменных поверхностей.

Изобретение относится к области очистки труб теплообменников чистящими телами в виде шаров. .

Изобретение относится к конструкциям устройств парогазовой термической очистки поверхности металлоизделий из легких металлов от смол и смолообразований и может быть использовано в хлебопекарной промышленности для очистки алюминиевых хлебопекарных форм от смолонагара, а также в цветной металлургии для очистки металлошихты легких металлов от смол перед плавкой в печах.

Изобретение относится к пневмоимпульсной технике и может быть использовано в различных областях народного хозяйства для импульсного воздействия на газообразные, жидкие и твердые среды.

Изобретение относится к области эксплуатации компрессорных станций магистральных газопроводов, в частности аппаратов воздушного охлаждения, и обеспечивает повышение эффективности очистки теплообменников аппаратов воздушного охлаждения.

Изобретение относится к механической очистке трубок конденсаторов паровых турбин на тепловых и атомных электростанциях. .

Изобретение относится к устройствам пневмоимпульсного обрушения сводов и очистки поверхностей аппаратов от отложений и может применяться в химической и металлургической промышленности, в горно-рудной и других отраслях.

Изобретение относится к технике очистки внутренней поверхности труб, преимущественно теплообменников кожухотрубного типа, и может быть использовано в химической, энергетической, металлургической, горной и других отраслях промышленности.

Изобретение относится к струйной обработке поверхностей, в частности к устройствам для очистки поверхностей нагрева котельных агрегатов. .

Изобретение относится к очистке поверхностей, в частности к устройствам для импульсной очистки поверхностей от отложений, и может быть использовано, например, в энергетике

Стенд // 2392558
Изобретение относится к области очистки, в частности, может быть использовано для очистки от накипи и шламовых отложений поверхности труб трубного пучка парогенератора

Изобретение относится к установкам для очистки поверхностей нагрева от наружных отложений и может быть использовано в теплоэнергетике и других отраслях промышленности, где существует проблема очистки теплообменных поверхностей

Изобретение относится к способам очистки поверхностей нагрева котлов от золовых и шлаковых отложений и может быть использовано в различных областях теплоэнергетики

Платформа // 2428646
Изобретение относится к технике очистки отложений с теплообменных труб и предназначено для использования при очистке накипи и шламовых отложений с поверхности труб трубного пучка парогенератора (ПГ) с последующей отмывкой и промывкой межтрубного пространства и внутрикорпусных устройств ПГ и дальнейшим удалением их за пределы последнего при проведении профилактического ремонта ядерной энергетической установки (ЯЭУ)

Изобретение относится к энергетике, а именно к вспомогательному оборудованию тепловых и АЭС

Изобретение относится к котлам с сажеобдувочным устройством. Технический результат изобретения направлен на минимизацию расхода чистящей жидкости в сажеобдувочном устройстве. Технический результат изобретения достигается в системе для минимизации количества потока охлаждающего воздуха в сажеобдувочном устройстве и в способе эксплуатации этой системы на основании температуры обдува. Система включает одно или несколько сажеобдувочных устройств, причем каждое из сажеобдувочных устройств имеет пику с удлиненной полой трубой и, по меньшей мере, одно сопло на дальнем конце трубы. Каждое из сажеобдувочных устройств способно перемещать пики в котел и из него во время ходов введения и удаления. Для измерения и контроля температуры кольцевой стенки трубы во время эксплуатации этих одного или нескольких сажеобдувочных устройств используют систему измерения температуры. Система управления управляет потоком пара по трубе и через сопло во время частей ходов очистки и охлаждения. В части ходов охлаждения используется нижний уровень потока пара по сравнению с частью ходов очистки во время частей ходов охлаждения на основании измерения температуры стенки системой измерения температуры и исключения измерения температуры стенки за пределами заданного предела температуры. 2 н. и 21 з.п. ф-лы, 6 ил.

Изобретение относится к устройству для удаления накипи из ячеек орошаемого ячеистого элемента, применяемого в теплообменнике типа воздух-вода. Согласно изобретению устройство содержит, по меньшей мере, один инструмент с активным острием, установленный с возможностью перемещения на раме между двумя положениями вдоль направления, общего для всех инструментов, установленных на раме, при этом активное острие этого инструмента выполнено на конце штока силового цилиндра, корпус которого выполнен подвижным с возможностью перемещения относительно рамы вдоль ее оси, при этом поршень, неподвижно соединенный со штоком, ограничивает в корпусе первую камеру, постоянно соединенную с источником текучей среды под давлением, и вторую камеру, через которую проходит шток, сообщающуюся с первой камерой, пока шток, по меньшей мере, частично убран в корпус силового цилиндра и изолирован от последней, и работающую на выпуск, когда шток находится в крайнем выдвинутом положении за пределами корпуса. Такое выполнение устройства повысит эффективность очистки поверхностей от накипи. 9 з.п. ф-лы, 3 ил.

Изобретение относится к котельной технике и может быть использовано в котельных установках тепловых электростанций и систем теплоснабжения. Техническим результатом является повышение экономичности и надежности котельной установки. Способ, включающий очистку воздухоподогревателей воздействием на отложения струями воды. При этом в качестве очищающей среды в воздухоподогревателе используют продувочную воду, которую отводят из барабана котла и впрыскивают в газоход уходящих газов перед воздухоподогревателем. 1 ил.
Наверх