Коррозионно-стойкий сплав на основе германия

Изобретение относится к разработке прецизионных сплавов с особыми физико-химическими свойствами - сплава на основе германия для получения пленок и покрытий, работающих в агрессивных средах, в частности в морской воде. Пленки и покрытия из предлагаемого сплава могут применяться в качестве коррозионно-стойких элементов систем управления в прецизионном приборостроении, в виде тонких резистивных пленок и покрытий схемных элементов сопротивления, работающих при воздействии агрессивных сред. Изобретение направлено на достижение высокой коррозионной стойкости в морской воде и повышение технологических характеристик при нанесении пленок и покрытий. Оптимальный по достигнутому эффекту является сплав при следующем соотношении компонентов, мас.%: хром 20,0-25,0; цирконий 5,0-9,0; церий 0,1-0,9; германий - остальное. Характеристики предложенного сплава: коррозионная стойкость 0,001-0,005 мм/год, адгезия пленок 8-12 МПа, когезия пленок 6,5-10,2 МПа. Пленки представляют собой наноструктурную систему с выделением наночастиц размером от 30 до 150 нм. 1 з.п. ф-лы, 1 табл.

 

Изобретение относится к области разработки прецизионных сплавов с особыми физико-химическими свойствами - сплава на основе германия, предназначенного для получения пленок и покрытий, работающих в агрессивных средах, в частности в морской воде. Пленки и покрытия из предлагаемого сплава могут применяться в качестве коррозионно-стойких элементов систем управления в прецизионном приборостроении, в виде тонких резистивных пленок и покрытий схемных элементов сопротивления, работающих при воздействии агрессивных сред.

Основные требования к резистивным материалам предъявляются к их временной и температурной стабильности, а также адгезионной и когезионной прочности наносимых пленок и покрытий. Определяющим фактором при этом является структура сплава, ее устойчивость к временным и температурным воздействиям при работе в агрессивных средах.

Известны сплавы на основе германия, прежде всего для литья микропроводов [1], в том числе с высокой коррозионной стойкостью [2, 3]. Однако в силу специфики процесса литья микропроводов эти сплавы непригодны для получения тонких пленок и покрытий методами гетерофазного переноса [4], т.к. не обеспечивают требуемой для этих методов адгезии и когезионной прочности наносимых пленок и покрытий. Кроме того, как показали проведенные нами испытания, другие известные аналоги являются нестойкими при длительном агрессивном воздействии морской воды.

Наиболее близким по технической сущности и достигаемому эффекту является сплав по авторскому свидетельству 406937 (МКИ C22C 31/00), содержащий компоненты (мас.%):

Хром 26-31
Никель 10-14
Кремний 1-2
Германий Остальное

Известный сплав обладает недостаточной коррозионной стойкостью в морской воде, а также не обеспечивает высокую адгезионную и когезионную прочность наносимых пленок и покрытий.

Техническим результатом изобретения является достижение высокой коррозионной стойкости в морской воде и повышение адгезионной и когезионной прочности наносимых пленок и покрытий.

Технический результат достигается за счет того, что предлагаемый сплав на основе германия, содержащий хром, дополнительно содержит цирконий и церий при следующем соотношении компонентов (мас.%):

Хром 20-25
Цирконий 5-9
Церий 0,1-0,9
Германий Остальное

В связи с отсутствием теоретических предпосылок о легировании сплавов при достаточно большом содержании легирующих элементов соотношение компонентов в предлагаемом сплаве подбиралось экспериментальным методом итераций.

Экспериментально установлено, что при содержании в сплаве хрома менее 20% его коррозионная стойкость в морской воде очень низкая, при количестве хрома более 25% не удается наладить устойчивость процесса нанесения покрытий - технологичность сплава весьма низкая.

Введение циркония в количестве 5-9% обеспечивает существенное измельчение структуры и появление наноразмерных выделений (размером от 30 до 150 нм). Это обеспечивает, во-первых, существенное улучшение технологических свойств при нанесении покрытий: получены пленки методом сверхзвукового холодного газодинамического напыления [5] толщиной от 20 до 100 мкм, имеющих высокую адгезию к металлическим подложкам (сталь, титан и др.) Во-вторых, достигается высокая коррозионная стойкость в морской воде.

При содержании циркония менее 5% этого эффекта не наблюдается, при содержании циркония более 9% не удается получить нанокристаллическую структуру и обеспечить тем самым высокую адгезионную прочность [6].

Однако из-за наличия неметаллических включений (оксиды германия) покрытие имеет низкую когезионную прочность, приводящую к охрупчиванию покрытий.

Эффективным раскислителем для сплавов системы германий-хром является церий, будучи введенным в малых количествах (от 0,1 до 0,9%), обеспечивает практически полное удаление оксидов и обеспечивает тем самым высокую когезионную прочность покрытий.

При меньшем чем 0,1% количестве церия этот эффект не наблюдается; при количестве церия более 0,9% он выделяется в виде самостоятельной фазы и снижает адгезионную прочность покрытия.

Сплавы из предложенных составов и прототипа выплавлялись в индукционной печи типа «УПИ-120-2» с рабочей частотой 880 кГц в алундовых тиглях. Масса слитка составляла 1 кг. После получения слиток измельчался на щековой дробилке типа ДЛЩ до фракции 3-5 мм, после чего измельчался до фракции 50 мкм на дезинтеграторной установке типа «ДЕЗИ-15». Оперативный контроль фракционного состава порошков проводился с использованием классификатора типа «ИГ-6У», анализатора ситового типа «А-20» и лазерного анализатора частиц типа «ЛАСКА-1К». Из полученного порошка были получены покрытия методом сверхзвукового холодного газодинамического напыления на установке типа «ДИМЕТ-3». В качестве подложки применялась сталь типа Х15Ю5. Толщина полученных покрытий варьировалась от 20 до 100 мкм. Испытания на коррозионную стойкость проводились по ГОСТу 9.908.-86. Испытания на адгезионную и когезионную прочность проводились клеевым методом. Клеевой метод является наиболее простым при количественной оценке прочности покрытия. Для проведения измерения прочность клея должна превышать или быть сравнимой с прочностью сцепления покрытия к подложке. Свойства сплавов предложенных составов по механическим характеристикам и коррозионной стойкости в морской воде существенно превосходят известные аналоги.

Результаты испытаний предлагаемого коррозионно-стойкого сплава в сравнении с прототипом и составами сплава за пределами предлагаемого сплава приведены в таблице 1.

Источники информации

1. Е.Я.Бадинтер и др. "Литой микропровод и его свойства". - Изд. «Штинца», г.Кишинев, 1973 г., стр.234.

2. Авторское свидетельство №393345

3. Авторское свидетельство №5847363.

4. В.С.Клубникин (редакция). Труды 5-й международной конференции «Пленки и покрытия 98», 1998 г., стр.20.

5. А.Ф.Васильев, Д.А.Геращенков, М.А.Юрков «Износо- и коррозионно-стойкие наноструктурированные покрытия с регулируемой твердостью, получаемые методом сверхзвукового холодного газодинамического напыления». Сборник докладов 2-го международного научно-технического симпозиума «Наноструктурные функциональные покрытия и материалы для промышленности» в рамках Харьковской нанотехнологической Ассамблеи, 2007.

6. Р.А.Андриевский. Наноматериалы: концепция, современные проблемы // Российский химический журнал, 2002, XLVI, №5, стр.50.

1. Коррозионно-стойкий сплав на основе германия, содержащий хром, отличающийся тем, что он дополнительно содержит цирконий и церий при следующем соотношении компонентов, мас.%:

Хром 20,0-25,0
Цирконий 5,0-9,0
Церий 0,1-0,9
Германий остальное

2. Сплав по п.1, отличающийся тем, что он используется для получения нанокристаллической структуры с размерами частиц от 30 до 150 нм в наносимом покрытии.



 

Похожие патенты:

Изобретение относится к огнетеплозащитным покрытиям и может быть использовано в ракетной технике для нанесения на внутреннюю поверхность сопла ракетного двигателя.
Изобретение относится к способам получения защитных футеровочных покрытий и может быть использовано для защиты изделий со сложным профилем, предназначенных для работы в условиях высокоагрессивной среды.

Изобретение относится к защитному слою, сплаву, из которого он выполнен, и конструктивному элементу. .

Изобретение относится к многослойным композиционным материалам для подшипников скольжения или втулок, в которых стремятся использовать не содержащие свинца скользящие слои.

Изобретение относится к многослойным композиционным материалам для подшипников скольжения или втулок, в которых стремятся использовать не содержащие свинца скользящие слои.

Изобретение относится к наноструктурным системам покрытий. .

Изобретение относится к области прецизионных сплавов. .
Изобретение относится к наноструктурированным покрытиям для нержавеющей стали и может быть использовано при эксплуатации нержавеющей стали в качестве материалов конструкционного и технологического назначения нефтехимической промышленности.

Изобретение относится к защитному слою для защиты детали от коррозии и окисления при высоких температурах. .

Изобретение относится к сплаву на основе кобальта в порошкообразной форме для нанесения покрытия на объекты, подвергающиеся эрозии жидкостями, в частности на лопатки паровых турбин, а также к способу нанесения такого сплава.

Изобретение относится к регенеративному материалу на основе оксисульфида редкоземельного металла и регенератору, в котором используют такой материал. .

Изобретение относится к области металлургии цветных металлов. .
Изобретение относится к области металлургии, в частности к металлогидридным сплавам, и может быть использовано в тепловых насосах для выработки холода, например, в качестве кондиционеров и в тепловых насосах, применяемых для выработки тепла.

Изобретение относится к металлургии, а именно к получению сплавов, состав которых обеспечивает возможность поглощения и выделения водорода. .

Изобретение относится к водородной энергетике, а именно к сплавам, используемым в аккумуляторах водорода и тепловых насосах. .

Изобретение относится к покрытию, образующему термический барьер и наносимому на поверхность изделия из суперсплава, например лопатки турбины газового турбинного двигателя, и способу нанесения этого покрытия.

Изобретение относится к металлургии, в частности к способам металлотермического получения сплавов переходных и редкоземельных элементов с легирующими добавками и может быть использовано для получения лигатур и специальных сплавов.

Изобретение относится к способу извлечения редкоземельных металлов из их фторидов для получения сплавов, включающему приготовление шихты из фторидов, алюминиевого порошка, металлического кальция и добавки, инициирование металлотермической реакции с получением расплава металлической и шлаковой фаз, охлаждение, выгрузку и отделение слитка от шлака.

Изобретение относится к получению лигатур для постоянных магнитов на основе металлов. .

Изобретение относится к сплавам на основе галлия. .
Изобретение относится к области электротехники и может быть использовано в электротехническом оборудовании
Наверх