Способ получения изделия из высоколегированного жаропрочного никелевого сплава

Изобретение относится к области металлургии, в частности к способу изготовления изделий из высоколегированных жаропрочных сплавов на никелевой основе. Способ включает трехступенчатый отжиг слитка, охлаждение на воздухе, деформацию в двухфазной области с получением заготовки и термическую обработку. Перед деформацией осуществляют нагрев заготовки от температуры на 600÷700°С ниже температуры полного растворения γ'-фазы до температуры на 50÷60°С ниже температуры полного растворения γ'-фазы со скоростью 60÷80°С/ч. Деформацию осуществляют прессованием слитка со скоростью 50÷70 мм/с и степенью деформации 60÷70%. Технический результат - получение изделия сложной конфигурации с высоким уровнем механических свойств. 2 з.п. ф-лы, 3 табл.

 

Изобретение относится к области металлургии, в частности к способу изготовления изделий из высоколегированных жаропрочных сплавов на никелевой основе, содержащих 30-35% упрочняющей γ'-фазы, таких как диски, рабочие лопатки, кольцевые заготовки газотурбинных двигателей, применяемых в авиации, ракетостроении, теплоэнергетике.

Известен способ изготовления прутков и профилей из жаропрочных труднодеформируемых сплавов на никелевой основе путем отжига литых заготовок при температуре выше точки растворимости γ'-фазы при 1200÷1230°С с выдержкой 2÷3 ч, охлаждения с печью со скоростью 0,3÷1°С/ч до 950÷750°С и последующего охлаждения на воздухе до комнатной температуры, обеспечивающей дисперсное распределение γ'-фазы, нагрева заготовки до 1100÷1140°С, подпрессовки их в закрытом объеме со степенью деформации 15÷20% с выдержкой под полным усилием в течение 10÷20 с и горячего прессования при температуре 1120÷1160°С через плоскую матрицу с применением пластичной шайбы, устанавливаемой на заходный торец матрицы, со скоростью 1,8÷6 м/мин (a.c. CCCP №473538).

Способ не обеспечивает устранения трещин при нагреве крупных слитков, формирования зерна величиной менее 10 мкм и достижения эффекта сверхпластичности в сплавах с количеством γ'-фазы 30÷35% с температурой полного растворения γ'-фазы, равной, или менее 1100°С, так как прессование осуществляется в однофазной области.

Известен способ изготовления изделий из жаропрочных сплавов, заключающийся в нагреве слитков до температуры выше Тпрγ', штамповке заготовки при температуре ниже Тпрγ' с суммарной степенью деформации εл≥0,5 и скоростью деформации отжиге деформированной заготовки при температуре выше

Тпрγ' с последующим охлаждением заготовки в интервале выделения γ'-фазы со скоростью менее 56°С/ч для получения перестаренной структуры, горячей штамповке заготовки со степенью деформации εл≥0,9 и скоростью деформации где Тпрγ - температура полного растворения γ'-фазы. Затем заготовку деформируют в изотермических условиях и подвергают термообработке (патент США №5693159).

Недостатками этого способа являются необходимость использования для изготовления изделий, в частности диска, слитков со сравнительно мелкозернистой структурой, невозможность осадки слитка при температуре выше Тпрγ' для большинства высоколегированных труднодеформируемых никелевых сплавов, большая трудоемкость процесса, отсутствие эффекта сверхпластичности.

Наиболее близким по технической сущности и достигаемому эффекту является способ изготовления диска из высоколегированного жаропрочного никелевого сплава, включающий трехступенчатый отжиг слитка, при котором на первой ступени слиток нагревают до температуры не более 40°С выше температуры полного растворения γ'-фазы, выдерживают при этой температуре не менее 6 часов и охлаждают до температуры второй ступени, которая на 20-50°С ниже температуры полного растворения γ'-фазы, выдерживают при этой температуре не менее 3 часов и охлаждают до температуры третьей ступени, которая на 60-100°С ниже температуры полного растворения γ'-фазы, выдерживают при этой температуре не менее 3 часов и охлаждают со скоростью 20-60°С/ч до температуры на 200-300°С ниже температуры полного растворения γ'-фазы, охлаждение слитка на воздухе, предварительную деформацию путем прессования при температуре на 70-100°С ниже температуры полного растворения γ'-фазы и окончательную деформацию штамповкой со скоростью не менее 10-4 с-1 при температуре на 50-120°С ниже температуры полного растворения γ'-фазы в изотермических условиях и термическую обработку (патент РФ №2256721).

К недостаткам способа прототипа следует отнести: возможность образования трещин в слитке при нагреве до первой ступени гомогенизирующего отжига, низкая технологическая пластичность, высокий уровень усилий деформирования и структурная неоднородность в деформируемых полуфабрикатах из жаропрочных сплавов с содержанием упрочняющей γ'-фазы 30-35%.

Технической задачей предлагаемого изобретения является разработка способа изготовления изделий из высоколегированных жаропрочных никелевых сплавов, обеспечивающего предотвращение образования трещин при нагреве слитков, снижение сопротивления деформации и усилий прессования, формирование ультрамелкого зерна величиной менее 10 мкм, достижения эффекта сверхпластичности, улучшение механической обработки поверхности изделия, повышение коэффициента использования металла, повышение механических свойств без изменения режима термической обработки.

Для достижения поставленной задачи предложен способ изготовления изделия из высоколегированного жаропрочного никелевого сплава, включающий трехступенчатый отжиг слитка, охлаждение на воздухе, деформацию в двухфазной области с получением заготовки и термическую обработку, отличающийся тем, что на первой ступени отжига слиток нагревают до температуры, которая на (600÷700)°С ниже температуры полного растворения γ'-фазы, выдерживают при этой температуре не более 3 часов и нагревают со скоростью 60÷80°С/ч до температуры второй ступени, которая на 30÷60°С выше температуры полного растворения γ'-фазы, выдерживают при этой температуре не более 8 часов и охлаждают со скоростью 10÷15°С/ч до температуры третьей ступени, которая на (50÷60)°С ниже температуры полного растворения γ'-фазы, перед деформацией осуществляют нагрев заготовки от температуры на 600÷700°С ниже температуры полного растворения γ'-фазы до температуры на 50÷60°С ниже температуры полного растворения γ'-фазы со скоростью 60÷80°С/ч, деформацию осуществляют путем прессования слитка со скоростью 50-70 мм/с и степенью деформации 60÷70%, после прессования полученное изделие нагревают до температуры на 40÷70°С ниже температуры полного растворения γ'-фазы, выдерживают не более 6 часов и охлаждают с печью со скоростью 30÷60°С/ч до температуры 800÷900°С и далее на воздухе.

Длинномерное прессованное изделие нагревают до температуры 1040÷1060°С, выдерживают не более 3 часов и подвергают правке со степенью деформации 1÷10%.

Нагрев слитка на первой ступени отжига до температуры, которая на (600÷700)°С ниже температуры полного растворения γ'-фазы, и время выдержки не более 3 часов обеспечивают предварительный прогрев объема слитка без образования термических трещин. Нагрев до температуры второй ступени и выдержка обеспечивают растворение избыточных фазовых составляющих и выравнивание легирующих элементов твердого раствора сплава. Ступенчатый отжиг слитков по предлагаемому режиму позволяет получить структуру с однородными укрупненными внутри зерен выделениями частиц γ'-фазы размером не менее 1,0 мкм, значительно повышает пластичность сплава и снижает сопротивление деформации, что обеспечивает возможность прессования при низких температурах в интервале Тпрγ' - (50÷60)°С в условиях контролируемой динамической рекристаллизации с приемлемыми в производственных условиях усилиями и обеспечением формирования ультрамелкозернистой структуры с величиной зерна γ'-фазы менее 10 мкм. Деформация при температурах выше Тпрγ' + 60°С приводит к формированию неоднородного микрозерна величиной более 30 мкм и образованию грубых поверхностных трещин, а при деформировании ниже температур Тпрγ' - 60°С резко возрастают усилия прессования. Прессование со скоростью менее 50 мм/с и/или со степенью деформации менее 60% приводят к понижению температуры слитка и резкому возрастанию сопротивления деформации, вплоть до невозможности получения изделия. Прессование со скоростью более 70 мм/с и/или со степенью деформации более 70% вызывают тепловой разогрев и формирование неоднородного микрозерна величиной более 10 мкм. Нагрев до температуры на 40÷70°С ниже температуры полного растворения γ'-фазы с выдержкой не более 6 часов и охлаждением с печью со скоростью 30÷60°С/ч до температуры 800÷900°С и далее на воздухе обеспечивает улучшение механической обработки поверхности изделия (предварительной обдирки и механической обработки под ультразвуковой контроль) без изменения размера ультрамелкого зерна величиной менее 10 мкм. Наличие в изделии зерна величиной менее 10 мкм обеспечивает высокую пластичность вплоть до сверхпластичности при дальнейшем изготовлении штамповок дисков, рабочих лопаток, кольцевых заготовок. Нагрев длинномерного прессованного изделия до температуры 1040÷1060°С с выдержкой не более 3 часов сохраняет ультрамелкое зерно и высокую технологическую пластичность, что обеспечивает возможность правки его в пределах требуемой незначительной (1÷10%) степени деформации для устранения кривизны с целью повышения выхода годного.

Пример осуществления

Предложенный способ был реализован при получении прессованного изделия диаметром 160 мм длиной 2800 мм и весом 415 кг из слитка диаметром 320 мм высоколегированного жаропрочного сплава ЭП742.

Для данной плавки сплава ЭП742 количество γ'-фазы составляло 30%, а температура ее полного растворения - 1100°С.

Слитки диаметром 320 мм, полученные методом вакуумно-дугового переплава подвергли гомогенизирующему отжигу в газовой печи карусельного типа.

Параметры технологических процессов изготовления трех прессованных изделий по предлагаемому способу и прототипу приведены в таблице 1. Параметры технологических процессов изготовления трех прессованных изделий по предлагаемому способу, включающему операцию правки, приведены в таблице 2. Прессование проводили на горизонтальном гидравлическом прессе усилием 6300 тс из контейнера 340 мм на прутки диаметром 160 мм с замером общих усилий прессования и расчетом удельных усилий. Из прессованных изделий изготавливали шлифы для исследования микро-структуры и образцы для испытания на растяжение в исходном состоянии и после проведения термической обработки. Испытания на растяжение в исходном состоянии проводили при температуре 1050°С, после окончательной термической обработки по режиму 1100°С, 8 ч, охлаждение на воздухе, 850°С, 6 ч, охлаждение на воздухе, 780°С, 16 ч, охлаждение на воздухе при температуре 20°С и на длительную прочность при температуре 650°С.

Результаты испытаний и исследований по предлагаемому способу в сравнении с прототипом приведены в таблице 3.

Предлагаемый способ обеспечил проведение нагрева слитков под гомогенизирующий отжиг и деформацию без образования трещин, снижение общих и удельных усилий деформирования, получение изделий с качественной поверхностью - без образования трещин, с небольшим короблением по примерам 1-3 табл.1 или с короблением, требующим использования операции правки по примерам 5-7 табл.2. Предлагаемый способ обеспечивает формирование в прессованном изделии однородной мелкозернистой структуры с размером зерна 5-8 мкм (табл.3), проявляющей эффект сверхпластичности, который используется при правке и при последующем изготовлении изделий, обеспечивает улучшение механической обработки поверхности изделия, повышение механических свойств без изменения режима термической обработки.

Таким образом, предлагаемый способ позволяет изготавливать изделия сложной конфигурации, с высоким уровнем механических свойств из высоколегированных жаропрочных никелевых сплавов с количеством γ'-фазы 30÷35%.

Таблица 2
Отжиг Параметры правки Отжиг прессованного изделия
По примеру 1 По примеру 2 Температура °С Время выдержки, час Степень деформации, % По примеру 1
1050 2 1
1040 2 5
1060 3 10

1. Способ получения изделия из высоколегированного жаропрочного никелевого сплава, включающий трехступенчатый отжиг слитка, охлаждение на воздухе, деформацию в двухфазной области с получением заготовки и термическую обработку, отличающийся тем, что на первой ступени отжига слиток нагревают до температуры, которая на 600-700°С ниже температуры полного растворения γ'-фазы, выдерживают при этой температуре не более 3 ч и нагревают со скоростью 60-80°С/ч до температуры второй ступени, которая на 30-60°С выше температуры полного растворения γ'-фазы, выдерживают при этой температуре не более 8 ч и охлаждают со скоростью 10-15°С/ч до температуры третьей ступени, которая на 50-60°С ниже температуры полного растворения γ'-фазы, перед деформацией осуществляют нагрев слитка от температуры на 600-700°С ниже температуры полного растворения γ'-фазы до температуры на 50-60°С ниже температуры полного растворения γ'-фазы со скоростью 60-80°С/ч, деформацию осуществляют путем прессования слитка со скоростью 50-70 мм/с и степенью деформации 60-70%, термическую обработку изделия осуществляют путем нагрева до температуры на 40-70°С ниже температуры полного растворения γ'-фазы, выдержки не более 6 ч и охлаждения с печью со скоростью 30-60°С/ч до температуры 800-900°С и далее на воздухе.

2. Способ по п.1, отличающийся тем, что после прессования изделие подвергают правке со степенью деформации 1-10%.

3. Способ по п.2, отличающийся тем, что перед правкой изделие нагревают до температуры 1040-1060°С и выдерживают не более 3 ч.



 

Похожие патенты:

Изобретение относится к деформационной обработке сплавов с эффектом памяти формы на основе интерметаллического соединения TiNi для эффективного получения наноструктурных и ультрамелкозернистых полуфабрикатов в виде проволоки, листа, полосы и фольги тонкого и супертонкого сечения с сохранением или повышением служебных свойств и может быть использовано в металлургии, машиностроении и медицине.
Изобретение относится к деформационно-термической обработке сплавов с эффектом памяти формы на основе интерметаллического соединения титан-никель и может быть использовано в металлургии, машиностроении и медицине.

Изобретение относится к металлургии сплавов, а именно к производству сплавов на основе никеля, используемых для деталей с монокристаллической структурой, например лопаток турбин, работающих при высоких температурах.

Изобретение относится к металлургии сплавов, а именно к производству сплавов на основе никеля, используемых для деталей с монокристаллической структурой, например лопаток турбин, работающих при высоких температурах.
Изобретение относится к металлургии и может быть использовано для изготовления деталей, например рабочих лопаток газотурбинных двигателей (ГТД). .
Изобретение относится к металлургии, а именно к получению изделий из многокомпонентных монокристаллических жаропрочных сплавов на никелевой основе, преимущественно лопаток и других деталей ГТД и ГТУ в авиационной и энергетической промышленности.

Изобретение относится к области термической обработки изделий и может найти применение для поверхностной упрочняющей обработки окончательно изготовленных деталей из жаропрочных сплавов, работающих в условиях повышенных температур и знакопеременных нагрузок.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении колец из жаропрочных никелевых сплавов. .
Изобретение относится к области технологии восстановительного ремонта деталей из жаропрочных никелевых сплавов после определенного срока их эксплуатации, а именно к применению горячего изостатического прессования при этом ремонте.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении изделий из длинномерных заготовок с относительной длиной высаживаемой части, превышающей допустимую по условию продольной устойчивости.

Изобретение относится к области обработки материалов давлением и может быть использовано при изготовлении многоплоскостных трубопроводов для пневмогидравлических систем агрегатов и машин.

Изобретение относится к области обработки материалов давлением и может быть использовано при изготовлении многоплоскостных трубопроводов для пневмогидравлических систем агрегатов и машин.

Изобретение относится к области обработки материалов давлением и может быть использовано при изготовлении многоплоскостных трубопроводов для пневмогидравлических систем агрегатов и машин.

Изобретение относится к области металлургического машиностроения и используется при производстве различных изделий из цилиндрических заготовок преимущественно из алюминиевых сплавов методом тиксотропного формообразования - тиксоштамповкой.

Изобретение относится к обработке металлов давлением и может быть использовано при получении длинномерных цилиндрических деталей со сквозным отверстием методом прямого холодного выдавливания.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении изделий из цилиндрических заготовок, преимущественно из алюминиевых сплавов, методом тиксотропного формообразования.

Изобретение относится к машиностроению, а именно к объемной штамповке лопаток для турбомашин. .

Изобретение относится к военной технике и может быть использовано при изготовлении высокоточного стрелкового оружия. .

Изобретение относится к обработке металлов давлением и может быть использовано как способ увеличения сечения длинномерного профиля, например, для переработки профиля одной конфигурации в профиль другой конфигурации большего сечения, в частности для восстановления изношенного сечения медных контактных проводов.

Изобретение относится к порошковой металлургии, в частности к получению высокоплотного материала из алюминиевых порошков путем равноканального углового прессования (РКУП)
Наверх