Способ термомеханической обработки титановых сплавов

Изобретение относится к области цветной металлургии, в частности к термомеханической обработке титановых сплавов, и может быть использовано в авиакосмической и ракетной технике. Согласно способу термомеханическую обработку проводят в девять стадий, при этом на первой стадии осуществляют нагрев до температуры (Тпп+200÷Тпп+270)°С, деформацию в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 20÷50% на каждом этапе деформации, на второй стадии - нагрев до температуры (Тпп+170÷Тпп+230)°С, деформацию в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 20÷40% на каждом этапе деформации, на третьей стадии - (Тпп-20÷Тпп-40)°С, (20-60)%, на четвертой стадии - (Тпп+60÷Тпп+120)°С, (20-60)%, на пятой стадии - (Тпп-20÷Тпп-40)°С, (20-60)%, на шестой стадии - (Тпп+30÷Тпп+90)°С, (20-60)%, на седьмой стадии - (Тпп-204÷Тпп-40)°С, (20-60)%, на восьмой стадии - (Тпп+30÷Тпп+80)°С, (20-70)%, на девятой стадии - (Тпп-20÷Тпп-40)°С, (20-50)%, где Тпп - температура полного полиморфного превращения. При этом от трех до семи деформаций, осуществляемых на стадиях с третьей по девятую, проводят с изменением направления деформации на 90°. Технический результат - повышение предела прочности и уменьшение чувствительности к перекосу изделий. 1 табл.

 

Изобретение относится к области цветной металлургии, в частности к термомеханической обработке титановых сплавов, и может быть использовано в авиакосмической и ракетной технике для изготовления болтов, шпилек и других крепежных деталей.

Известен способ термомеханической обработки титановых сплавов, применяемых при изготовлении изделий авиакосмической техники, включающий:

- нагрев до температуры (1050-1200)°С (Тпп+120÷Тпп+270)°С, деформацию в процессе охлаждения до 850°С (Тпп-40)°С;

- нагрев до температуры (880-1050)°С (Тпп-50÷Тпп+120)°С;

- охлаждение в процессе деформации до температуры 750°С (Тпп-180)°С,

где Тпп=920°С (Александров В.К., Аношкин Н.Ф., Белозеров А.П. «Полуфабрикаты из титановых сплавов». М.: ОНТИ ВИЛС, 1996 г., с.371).

Недостатком известного способа является низкий уровень механических свойств титановых сплавов, обработанных данным способом.

Известен также способ термомеханической обработки титановых сплавов, включающий нагрев в β-области выше температуры полиморфного превращения, деформацию в процессе охлаждения до температуры на (30-70)°С ниже температуры полиморфного превращения, охлаждение, повторный нагрев в двухфазной области, повторную деформацию в этой области в процессе охлаждения, повторное охлаждение, окончательный нагрев в двухфазной области, выдержку и охлаждение, отличающийся тем, что с целью повышения механических свойств деформацию проводят в β- и (α+β)-областях с одинаковой степенью, равной 40-60%, повторный нагрев осуществляют до температуры на 20-40°С ниже температуры полиморфного превращения, повторную деформацию проводят со степенью 25-35% при охлаждении до температуры на 100-130°С ниже температуры полиморфного превращения, повторное охлаждение после деформации осуществляют до температуры на 180-280°С ниже температуры полиморфного превращения, после чего дополнительно повторяют последний цикл нагрева и деформации в процессе охлаждения в тех же условиях, а охлаждение после деформации в этом цикле проводят до комнатной температуры, окончательный нагрев осуществляют до температуры на 100-300°С ниже температуры полиморфного превращения (а.с. СССР 1740487).

Недостатком известного способа является низкий уровень механических свойств титановых сплавов, обработанных данным способом.

Наиболее близким аналогом, взятым за прототип, является способ термомеханической обработки титановых сплавов, включающий многократные нагревы до температуры выше и ниже температуры полиморфного превращения и деформацию в процессе охлаждения до температуры ниже температуры полиморфного превращения, выдержку и охлаждение, в котором термомеханическую обработку проводят в шесть стадий, при этом на первых пяти стадиях осуществляют:

- нагрев до температуры (Тпп+120÷Тпп+270)°С, деформацию со степенью (50-70)% при охлаждении до (Тпп-40÷Тпп-100)°С;

- нагрев до температуры (Тпп+60÷Тпп+160)°С, деформацию со степенью (40-60)% при охлаждении до (Тпп-100÷Тпп-180)°С;

- нагрев до температуры (Тпп-20÷Тпп-40)°С, деформацию со степенью (10-30)% при охлаждении до (Тпп-140÷Тпп-160)°С;

- нагрев до температуры (Тпп+20÷Тпп+50)°С, деформацию со степенью (40-60)% при охлаждении до (Тпп-110÷Тпп-130)°С;

- нагрев до температуры (Тпп+20÷Тпп+50)°С, деформацию со степенью (30-70)% при охлаждении до (Тпп-110÷Тпп-130)°С;

затем, на шестой стадии, проводят нагрев до температуры (Тпп-400÷Тпп-500)°С с выдержкой в течение (5-20) часов, где Тпп - температура полиморфного превращения (патент РФ №2219280).

Титановые сплавы, обработанные этим способом, обладают недостаточно высоким уровнем механических свойств.

Технической задачей изобретения является повышение предела прочности в надрезе (σвн) и уменьшение чувствительности к перекосу изделий, выполненных из титановых сплавов.

Поставленная техническая задача достигается тем, что предложен способ термомеханической обработки титановых сплавов, который осуществляют в девять стадий, при этом:

на первой стадии осуществляют нагрев до температуры (Тпп+200÷Тпп+270)°С, деформацию в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 20÷50% на каждом этапе деформации;

на второй стадии - нагрев до температуры (Тпп+170÷Тпп+230)°С, деформацию в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 20÷40% на каждом этапе деформации;

на третьей стадии - нагрев до температуры (Тпп-20÷Тпп-40)°С, деформацию со степенью (20-60)%;

на четвертой стадии - нагрев до температуры (Тпп+60÷Тпп+120)°С, деформацию со степенью (20-60)%;

на пятой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°С, деформацию со степенью (20-60)%;

на шестой стадии - нагрев до температуры (Тпп+30÷Тпп+90)°С, деформацию со степенью (20-60)%;

на седьмой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°С, деформацию со степенью (20-60)%;

на восьмой стадии - нагрев до температуры (Тпп+30÷Тпп+80)°С, деформацию со степенью (20-70)%;

на девятой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°С, деформацию со степенью (20-50)%,

где Тпп - температура полного полиморфного превращения; при этом от трех до семи деформаций, осуществляемых на стадиях с третьей по девятую, проводят с изменением направления деформации на 90°.

На первой и второй стадии термомеханической обработки происходит заваривание различно ориентированных раковин и уплотнение металла на стыках дендритов, механическое усреднение состава сплава, устранение зональной и дендритной ликвации в слитке, усреднение состава по диффузионному механизму, активизированному процессами динамической рекристаллизации.

С третьей по восьмую стадии осуществляются процессы фазовой перекристаллизации, состоящие из деформации при температуре ниже полиморфного превращения на третьей, пятой и седьмой стадиях, при котором создается повышенная плотность дислокационной структуры, и последующих нагревов при температуре β-области на четвертой, шестой и восьмой стадиях, при которых происходит образование первичных β-зерен из большого количества центров, формирующихся вокруг дислокаций. Это обеспечивает получение однородной сверхмелкозернистой β-структуры.

На окончательной девятой стадии происходит формирование внутризеренной структуры и нарушение границ β-зерен, которые становятся прерывистыми или в виде зубцов.

Таким образом, в процессе девяти стадий обработки достигается формирование однородного химического состава, устранение пор, несплошностей и рыхлот, формирование однородной сверхмелкозернистой β-структуры и однородной внутризеренной регламентированной структуры.

Проведение всех девяти стадий термомеханической обработки обеспечивает создание сплава с высоким уровнем механических свойств.

Примеры осуществления

Были изготовлены образцы из титановых сплавов, например ВТ23 и ВТ43, обработанные предлагаемым способом и способом-прототипом, которые были подвергнуты механическим испытаниям.

Пример 1

На первой стадии осуществляют нагрев до температуры (Тпп+200)°С, деформацию в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 20% на каждом этапе деформации;

на второй стадии - нагрев до температуры (Тпп+170)°С, деформацию в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 20% на каждом этапе деформации;

на третьей стадии - нагрев до температуры (Тпп-20)°С, деформацию со степенью 20%;

на четвертой стадии - нагрев до температуры (Тпп+60)°С, деформацию с изменением направления деформации на 90° со степенью 20%;

на пятой стадии - нагрев до температуры (Тпп-20)°С, деформацию со степенью 20%;

на шестой стадии - нагрев до температуры (Тпп+30)°С, деформацию с изменением направления деформации на 90° со степенью 20%;

на седьмой стадии - нагрев до температуры (Тпп-20)°С, деформацию со степенью 20%;

на восьмой стадии - нагрев до температуры (Тпп+30)°С, деформацию со степенью 20%;

на девятой стадии - нагрев до температуры (Тпп-20)°С, деформацию с изменением направления деформации на 90° со степенью 20%.

Пример 2

На первой стадии осуществляют нагрев до температуры (Тпп+270)°С, деформацию в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 50% на каждом этапе деформации;

на второй стадии - нагрев до температуры (Тпп+230)°С, деформацию в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 40% на каждом этапе деформации;

на третьей стадии - нагрев до температуры (Тпп-40)°С, деформацию с изменением направления деформации на 90° со степенью 60%;

на четвертой стадии - нагрев до температуры (Тпп+120)°С, деформацию с изменением направления деформации на 90° со степенью 60%;

на пятой стадии - нагрев до температуры (Тпп-40)°С, деформацию со степенью 60%;

на шестой стадии - нагрев до температуры (Тпп+90)°С, деформацию с изменением направления деформации на 90° со степенью 60%;

на седьмой стадии - нагрев до температуры (Тпп-40)°С, деформацию со степенью 60%;

на восьмой стадии - нагрев до температуры (Тпп+80)°С, деформацию с изменением направления деформации на 90° со степенью 70%;

на девятой стадии - нагрев до температуры (Тпп-40)°С, деформацию с изменением направления деформации на 90° со степенью 50%.

Пример 3

На первой стадии - нагрев до температуры (Тпп+240)°С, деформацию в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 30% на каждом этапе деформации;

на второй стадии - нагрев до температуры (Тпп+200)°С, деформацию в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 30% на каждом этапе деформации;

на третьей стадии - нагрев до температуры (Тпп-30)°С, деформацию с изменением направления деформации на 90° со степенью 40%;

на четвертой стадии - нагрев до температуры (Тпп+90)°С, деформацию с изменением направления деформации на 90° со степенью 40%;

на пятой стадии - нагрев до температуры (Тпп-30)°С, деформацию с изменением направления деформации на 90° со степенью 40%;

на шестой стадии - нагрев до температуры (Тпп+70)°С, деформацию с изменением направления деформации на 90° со степенью 40%;

на седьмой стадии - нагрев до температуры (Тпп-30)°С, деформацию с изменением направления деформации на 90° со степенью 40%;

на восьмой стадии - нагрев до температуры (Тпп+70)°С, деформацию с изменением направления деформации на 90° со степенью 40%;

на девятой стадии - нагрев до температуры (Тпп-30)°С, деформацию с изменением направления деформации на 90° со степенью 30%.

В таблице приведены механические свойства образцов поковок и штамповок из титановых сплавов, обработанных по предлагаемому способу(1-3) и способу-прототипу (4).

Предлагаемый способ термомеханической обработки титановых сплавов позволит повысить предел прочности в надрезе (σвн) на 25% и уменьшить чувствительность к перекосу на 45%.

Использование предлагаемого способа термомеханической обработки позволит снизить массу деталей на 25% и повысить полезную нагрузку летательных аппаратов, а также повысить эксплуатационную надежность за счет высоких значений предела прочности в надрезе и уменьшения чувствительности к перекосу изделий из титановых сплавов.

Способ Механические свойства: σвн (МПа) при угле перекоса 0, 4, 6 град.
0 4 6
ВТ23* ВТ43** ВТ23 ВТ43 ВТ23 ВТ43
1 образцы из поковок 1620 1670 1380 1420 1210 1230
образцы из штамповок 1632 1674 1325 1427 1216 1234
2 образцы из поковок 1640 1690 1370 1410 1185 1210
образцы из штамповок 1642 1695 1372 1417 1188 1214
3 образцы из поковок 1670 1710 1360 1370 1160 1190
образцы из штамповок 1673 1714 1365 1372 1164 1197
4 образцы из поковок 1260 1290 1050 1020 680 800
образцы из штамповок 1263 1291 1057 1024 681 804
* ВТ23: Тпп=920°С;
** ВТ43: Тпп=910°С

Способ термомеханической обработки титановых сплавов, отличающийся тем, что термомеханическую обработку проводят в девять стадий, при этом
на первой стадии осуществляют нагрев до температуры (Тпп+200÷Тпп+270)°С, деформацию в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 20÷50% на каждом этапе деформации,
на второй стадии - нагрев до температуры (Тпп+170÷Тпп+230)°С, деформацию в четыре этапа с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 20÷40% на каждом этапе деформации,
на третьей стадии - нагрев до температуры (Тпп-20÷Тпп-40)°С, деформацию со степенью (20-60)%,
на четвертой стадии - нагрев до температуры (Тпп+60÷Тпп+120)°С, деформацию со степенью (20-60),
на пятой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°С, деформацию со степенью (20-60)%,
на шестой стадии - нагрев до температуры (Тпп+30÷Тпп+90)°С, деформацию со степенью (20-60)%,
на седьмой стадии - нагрев до температуры (Тпп-204÷Тпп-40)°С, деформацию со степенью (20-60)%,
на восьмой стадии - нагрев до температуры (Тпп+30÷Тпп+80)°С, деформация со степенью (20-70)%,
на девятой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°С, деформацию со степенью (20-50)%, где Тпп - температура полного полиморфного превращения,
при этом от трех до семи деформаций, осуществляемых на стадиях с третьей по девятую, проводят с изменением направления деформации на 90°.



 

Похожие патенты:
Изобретение относится к области цветной металлургии, в частности к термомеханической обработке титановых сплавов, и может быть использовано в космической и ракетной технике для создания конструкций, работающих при повышенных температурах.

Изобретение относится к деформационной обработке сплавов с эффектом памяти формы на основе интерметаллического соединения TiNi для эффективного получения наноструктурных и ультрамелкозернистых полуфабрикатов в виде проволоки, листа, полосы и фольги тонкого и супертонкого сечения с сохранением или повышением служебных свойств и может быть использовано в металлургии, машиностроении и медицине.
Изобретение относится к деформационно-термической обработке сплавов с эффектом памяти формы на основе интерметаллического соединения титан-никель и может быть использовано в металлургии, машиностроении и медицине.
Изобретение относится к деформационно-термической обработке титановых сплавов с целью формирования ультрамелкозернистой структуры. .
Изобретение относится к металлургии и может быть использовано в авиакосмической и ракетной технике для изготовления баллонов, корпусов, обтекателей, обшивки, оболочек, днищ.

Изобретение относится к обработке металлов давлением и предназначено для правки листового проката крип-отжигом, преимущественно крупногабаритных листов и плит из титановых сплавов.

Изобретение относится к области термообработки, в частности к газопоглотителям, служащим для очистки от кислорода в воздушной среде печи термообрабатываемых в ней материалов, изделий и соответственно предотвращающих их окисление.

Изобретение относится к производству плоских заготовок (листов и лент) из циркониевого сплава, применяемых, в частности, для изготовления элементов легководного реактора атомной электростанции.
Изобретение относится к области цветной металлургии, в частности к термомеханической обработке титановых сплавов, и может быть использовано в авиакосмической технике

Изобретение относится к металлургии, в частности к способам получения штамповок из титановых сплавов
Изобретение относится к цветной металлургии и может быть использовано в авиакосмической и ракетной технике для изготовления пилонов двигателя и силовых конструкций носовых обтекателей ракет, эксплуатируемых в условиях повышенных температур
Изобретение относится к цветной металлургии и может быть использовано в авиакосмической и ракетной технике для создания деталей и узлов шасси самолетов и стыковочных узлов ракет, работающих в условиях циклических нагрузок

Изобретение относится к обработке металлов давлением, в частности к термомеханической обработке двухфазных титановых сплавов

Изобретение относится к обработке давлением и может быть использовано в авиационной и энергетической промышленности при изготовлении изделий ответственного назначения для газотурбинных двигателей, газотурбинных установок и самолетных конструкций из титановых сплавов

Изобретение относится к области обработки металлов давлением, а именно к способу изготовления тонких листов из высокопрочного титанового сплава Ti-6Al-4V методом рулонной прокатки

Изобретение относится к способу изготовления особо тонких листов из высокопрочных титановых сплавов методом пакетной прокатки

Изобретение относится к области металлургии, в частности к прокатному производству, и предназначено для изготовления плоского профиля из циркониевых сплавов, используемого в качестве конструкционного материала в активных зонах атомных реакторов, в химической и нефтегазовой промышленности
Изобретение относится к области обработки металлов давлением и может быть использовано, например, в авиационной промышленности при изготовлении деталей из титановых сплавов, преимущественно лопаток
Наверх