N,n'-бис(диметилкарбамоил)-n,n'-бис(9-антрилметил)гексан-1,6-диамин - флуоресцентный хемосенсор на катионы eu3+

Изобретение относится к новому N,N'-бис(диметилкарбамоил)-N, N'-бис(9-антрилметил)гексан-1,6-диамину формулы I:

,

обладающему свойствами высокоселективного и высокоэффективного флуоресцентного хемосенсора на катионы Eu3+. 1 ил.

 

Изобретение относится к новым производным в ряду N,N'-бис(9-антрилметил)замещенных алкандиаминов, а именно к N,N'-бис(диметилкарбамоил)-N,N'-бис(9-антрилметил)гексан-1,6-диамину формулы I:

обладающему свойствами высокоселективного и высокоэффективного флуоресцентного хемосенсора на катионы Еu3+.

В настоящее время достаточно большое количество соединений, содержащих тот или иной рецептор (комплексообразующий фрагмент, ответственный за избирательное связывание субстрата) и флуорофор (так называемый «сигнальный» фрагмент молекулы хемосенсора, оптические свойства которого меняются при взаимодействии рецептора с субстратом), представлены авторами как эффективные хемосенсоры на различные катионы (J.F.Callan, А.Р. de Silva, D.C.Magri. Luminescent sensors and switches in the early 21st century. Tetrahedron, 2005, №36, p.8551-8588; B.A.Брень. Флуоресцентные и фотохромные хемосенсоры. Успехи химии, 2001, №12, с.1152-1174; В.Valeur, I.Leray. Design principles of fluorescent molecular sensors for cation recognition. Coordination Chemistry Reviews, 2000, v.205, №1, p.3-40). Функцию рецепторов в таких соединениях выполняют различные азотсодержащие структуры - азакраунэфиры, азаподанды, каликсарены, азагетероциклы. В большинстве случаев в этих системах проявляется так называемый РЕТ-эффект (Photoinduced Electron Transfer) - фотоиндуцируемый перенос электрона (G.J.Kavamos. Fundamentals of Photoinduced Electron Transfer. NY, Wiley-VCH, 1993, 359 p.). Однако зачастую многие хемосенсорные системы, содержащие сильный акцептор в рецепторной части, работают на механизме обратном РЕТ-эффекту, так называемом окислительном РЕТ-эффекте (или CHEQ-эффекте - Chelation-Enhanced Fluorescent Quenching). Донором электронов у такого сенсора является флуорофор, а рецептор - акцептором. При возбуждении молекулы происходит свободный перенос электрона с высшей занятой молекулярной орбитали (ВЗМО) флуорофора на низшую свободную молекулярную орбиталь (НСМО) и обратно. Перенос на НСМО свободного рецептора является невыгодным, так как орбиталь на энергетической диаграмме находится выше, чем НСМО флуорофора. И сенсор флуоресцирует. При комплексообразовании происходит резкое снижение уровня энергии НСМО рецептора, приводящее к тому, что становится энергетически выгодным перенос возбужденного электрона с НСМО флуорофора на НСМО рецептора, тем самым вызывая тушение флуоресценции. Эффективность таких хемосенсоров оценивается двумя факторами - степенью изменения исходной интенсивности флуоресценции при добавлении субстрата и селективностью обнаружения определенного катиона.

В основном описанные в литературе системы для определения Еu3+ относятся к классу электрохимических сенсоров (М.R.Ganjali, P.Norouzi, A.Daftari, F.Faridbod, М.Salavati-Niasari. Fabrication of a highly selective Eu(III) membrane sensor based on a new S-N hexadentates Schiff's base. Sensors and Actuators B, 2007, p.673-678). Также распространено использование комплексов на основе катионов европия (III) для определения различных катионов и анионов (D.Parker. Luminescent lanthanide sensors for рН, pO2 and selected anions. Coordination Chemistry Reviews, 2000, p.109-130).

Примером высокоселективного флуоресцентного сенсора на катионы Еu3+ может служить диазосоединение, содержащие в качестве рецептора бензо-15-краун-5 (V.Bekiaria, P.Judeinstein, P.Lianosa. A sensitive fluorescent sensor of lanthanide ions. Journal of Luminescence, 2003, p.13-15). При взаимодействии данного соединения с катионами европия происходит двадцатикратное увеличение интенсивности флуоресценции, а заявленная селективность сенсора была установлена по отношению к ионам: Na+, Cd2+, In3+, Er3+, Tb3+, Pr3+, Nd3+ и др. Однако люминесцентные свойства синтезированной кислоты в присутствии смеси различных катионов не были изучены.

Наиболее близким по структуре и достигаемому результату является N,N'-бис(9-антрилметил)гексан-1,6-диамин, проявляющий селективные хемосенсорные свойства по отношению к катионам Zn2+ (И.Е.Толпыгин, В.А.Брень, А.Д.Дубоносов, В.И.Минкин, В.П.Рыбалкин. Новые флуоресцентные хемосенсоры на основе 9-аминометилантрацена. Журнал органической химии, 2003, №9, с.1435-1437).

Техническим результатом изобретения является новое производное в ряду N,N'-бис(9-антрилметил)замещенных алкандиаминов, проявляющее новые для этого ряда соединений эффективные и селективные хемосенсорные свойства по отношению к ионам Еu3+.

Технический результат достигается соединением формулы I, синтез которого заключается во взаимодействии N,N'-бис(9-антрилметил)гексан-1,6-диамина (И.Е.Толпыгин, В.А.Брень, А.Д.Дубоносов, В.И.Минкин, В.П.Рыбалкин. Новые флуоресцентные хемосенсоры на основе 9-аминометилантрацена. Журнал органической химии, 2003, №9, с.1435-1437) с диметилкарбамоилхлоридом с образованием N,N'-бис(диметилкарбамоил)-N,N'-бис(9-антрилметил)гексан-1,6-диамина (I).

Строение всех синтезированных соединений доказано элементным анализом, данными ИК- и ЯМР 1Н спектров. В ИК - спектре соединения I, снятого в вазелиновом масле, отсутствует полоса валентных колебаний вторичной аминогруппы при ~3400 см-1, характерная для N,N'-бис(9-антрилметил)гексан-1,6-диамина, а также присутствует полоса валентных колебаний С=O-группы при 1650 см-1. В спектре ЯМР 1Н мочевины I присутствуют сигналы от двенадцати протонов метальных групп в виде синглета при 2,72 м.д., а также отсутствуют сигналы двух аминогрупп, характерных для незамещенного диамина.

Ниже приведена методика синтеза предлагаемого соединения.

Пример 1. N,N'-бис(диметилкарбамоил)-N,N'-бис(9-антрилметил)гексан-1,6-диамин. Растворяют 0,50 г (1 ммоль) N,N'-бис(9-антрилметил)гексан-1,6-диамина в толуоле, добавляют избыток триэтиламина и 0,23 мл (2,5 ммоль) диметилкарбамоилхлорида. Полученную смесь нагревают 2 часа. Охлаждают, толуольный раствор промывают водой, сушат и упаривают. Остаток кристаллизуют из 1-бутанола. Выход 76,1%, т.пл. 232-233°С (1-бутанол). ИК спектр, ν, см-1: 1650, 1465, 1385. Спектр ЯМР 1Н, δ, м.д.: 0,68-0,80 (4Н, м, (СН2)2); 1,07-1,20 (4Н, м, 2СН2); 2,60 (4Н, т, 2СН2); 2,72 (12Н, с, 4СН3); 5,27 (4Н, с, 2СН2); 7,40-8,63 (18Н, м, аром. Н). Найдено, %: С 79,07; Н 7,31; N 8,70.

С42Н46N4O2. Вычислено, %: С 78,96; Н 7,26; N 8,77.

Исследование хемосенсорных свойств

Методы исследования. Оценку сенсорной способности соединения I проводили по данным спектров флуоресценции в области локальной флуоресценции антрацена. Для этого к раствору соединения I (с=5×10-7 моль/л) добавляли расчетный пятикратный мольный избыток катионов различных типов: H+ (в виде трифторуксусной кислоты), Zn2+, Cd2+, Со2+, Ni2+, Cu2+, Hg2+, La3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Dy3+, Ho3+, Yt3+ (в виде ацетатов) или их смеси, и перемешивали раствор до полного растворения соли. Затем проводили съемку спектров флуоресценции на длине волны флуор=414 нм ( возб.=375 нм) исходного раствора и растворов, содержащих помимо соединения I другие катионы. Съемка спектров люминесценции проводилась на спектрофлуориметре Hitachi 650-60.

Расчет относительного изменения интенсивности флуоресценции проводили по формуле: ОИИФ=I/I0 где

I0 - исходная интенсивность флуоресценции раствора соединения I;

I - интенсивность флуоресценции раствора соединения I после добавления пятикратного мольного избытка катиона.

Результаты испытаний

Хемосенсор I обладает весьма интенсивной флуоресценцией антраценового типа в растворах ацетонитрила при возбуждении светом возб.=375 нм (три индивидуальных максимума в области 390-440 нм и плечо 460-470 нм).

Комплексообразование с большинством катионов не вызывает существенных изменений интенсивности флуоресценции. Добавление катионов европия (III) к раствору сенсора I вызывает затухание интенсивности флуоресценции в 50 раз (I/I0=0,02), что говорит о его высокой хемосенсорной активности на эти катионы (см. чертеж).

Селективность данного сенсора была показана при добавлении к исходному раствору амина I смеси катионов лантаноидов: Еu3+, La3+, Pr3+, Nd3+, Sm3+, Gd3+, Dy3+, Ho3+, Yt3+, при этом каждый из катионов был взят в пятикратном мольном избытке относительно соединения I. Уменьшение интенсивности флуоресценции (гашение) в этом случае также происходит в ~50 раз. То есть не наблюдалось существенного отклонения интенсивности флуоресценции раствора соединения I с добавлением смеси катионов (Еu3+, La3+, Pr3+, Nd3+, Sm3+, Gd3+, Dy3+, Ho3+, Yt3+) от раствора соединения I с добавлением только катионов Еu3+, что свидетельствует о высокой селективности данного флуоресцентного хемосенсора по отношению к ионам Еu3+.

Таким образом, проведенное исследование спектральных свойств N,N'-бис(диметилкарбамоил)-N,N'-бис(9-антрилметил)гексан-1,6-диамина (I) показало, что данное соединение является высокоэффективным и высокоселективным флуоресцентным хемосенсором на катионы Еu3+.

1. N,N'-Бис(диметилкарбамоил)-N,N'-бис(9-антрилметил)гексан-1,6-диамин формулы I:



 

Похожие патенты:

Изобретение относится к новым производным ряда 1,2-дизамещенных 2-аминобензимидазола бензимидазолов, а именно к 2-(9-антрилметил)амино-1-[2-(1-пирролидинил)этил]бензимидазолу формулы I: обладающему свойствами флуоресцентного хемосенсора на катионы Н+.

Изобретение относится к новым полимерным соединениям, которые могут быть использованы в качестве активных слоев органических светоизлучающих диодов с высокой эффективностью излучения в синей области.

Изобретение относится к электролюминесцентным материалам, содержащим органическое люминесцентное вещество. .

Изобретение относится к флуоресцентному отбеливателю, содержащему смесь двух симметрично и одной асимметрично замещенной дисульфоновой кислоты триазиниламиностильбена новым асимметрично замещенным производным, способу их получения и применению смеси для отбеливания синтетических или природных органических материалов, в особенности бумаги, и для флуоресцентного отбеливания и улучшения солнцезащитных факторов текстильных материалов.

Изобретение относится к области биотехнологии, конкретно к нуклеиновым кислотам, кодирующим быстросозревающие флуоресцирующие белки, и может быть использовано в медицине и для диагностики.

Изобретение относится к флуоресцентным печатным краскам для струйной печати. .

Изобретение относится к новым производным ряда N,N'-бис(9-антрилметил)замещенных алкандиаминов, а именно N,N'-бис(9-антрилметил)циклогексан-1,2-диамину формулы I: обладающему в нейтральной среде свойствами высокоселективного флуоресцентного хемосенсора на катионы Zn2+ .

Изобретение относится к электролюминесцентным материалам, содержащим органическое люминесцентное вещество. .

Изобретение относится к полимерным изделиям, обладающим флуоресцентными свойствами и свойством отражения в обратном направлении, и могут найти широкое применение для распространения информации и сигнализации.

Изобретение относится к полимерным многослойным, флуоресцентно окрашенным изделиям, пригодным для широкого использования в целях распространения видимой информации.

Изобретение относится к способам получения лекарственного вещества, а именно мета-хлордифенилметилмочевины, которая является оригинальным отечественным антиконвульсантом и рекомендована Фармкомитетом СССР к медицинскому применению в качестве противоэпилептического средства под названием галодиф [1] Задачей изобретения является увеличение выхода галодифа и упрощение способа его получения.

Изобретение относится к новому химическому соединению, а именно к сернокислой соли 2-N-метиламино-5-хлорбензгидрилмочевины, формулы I: которое проявляет противосудорожную активность.

Изобретение относится к способам получения биологически активных 5-хлор-2-аминозамещенных бензгидрилмочевин, эффективно действующих на монокооксигеназную систему печени и проявляющих высокую антигипоксическую активность.

Изобретение относится к новым радиофармацевтическим соединениям структурной формулы I. В формуле I R обозначает Н или (C1-C8)алкильную группу; W обозначает связь, -CH(NH2)-, -C(O)-NH-CH(COOH)-, -O-(CH2)n-O-(CH2)n- или -(CH2)nO(CH2)nO(CH2)n; Z обозначает -NHC(O)-, -NH-C(O)-CH(NH2)- или -C(O)-NH-CH(COOH)-; e целое число от 1 до 4; f целое число от 0 до 10; g целое число от 0 до 10; n целое число от 0 до 2; значения радикала NRaRb приведены в формуле изобретения. Изобретение также относится к радионуклидному комплексу, содержащему радиоактивный металл и указанные соединения, к фармацевтическому составу для визуализации и к способу визуализации какой-либо области у пациента, например ткани, выбранной из ткани селезенки, ткани почки или экспрессирующей PSMA опухолевой ткани. 8 н. и 13 з.п. ф-лы, 6 ил., 1 табл., 18 пр.

Изобретение относится к способу получения мета-хлорбензгидрилмочевины(галодифа) с использованием магнитных наночастиц, модифицированных сульфогруппами. Способ включает конденсацию мета-хлорбензгидриламина, закрепленного на магнитных наночастицах Fe2O3@SO3H, с цианатами щелочных металлов при комнатной температуре в водно-спиртовой среде в течение 1 часа. Изобретение позволяет упростить способ получения мета-хлорбензгидрилмочевины(галодифа). 1 табл., 2 пр.

Изобретение относится к молекуле формулы один, в которой R1 представляет собой Н, F, Cl, Br или I; R2 представляет собой Н, F, Cl, Br или I; R3 представляет собой Н, F, Cl, Br или I; R4 представляет собой Н, F, Cl, Br или I; R5 представляет собой Н, F, Cl, Br или I; R6 представляет собой (C1-C8)галогеналкил; R7 представляет собой Н; R8 представляет собой Н; R9 представляет собой Н; R10 представляет собой F, Cl, Br, I, (C1-C8)алкил или галоген(C1-C8)алкил; R11 представляет собой C(=O)N(R14)((C1-C8)алкилC(=O)R15); R12 представляет собой Н; R13 представляет собой Н; R14 представляет собой Н; R15 представляет собой N(R16)(R17) или (C1-C8)алкил-C(=O)N(R16)(R17); R16 представляет собой Н; R17 представляет собой галоген(C1-C8)алкил; X1 представляет собой CR12; X2 представляет собой CR13; Х3 представляет собой CR9. Технический результат: получены новые соединения, которые могут быть полезны в борьбе с насекомыми-вредителями. 8 з.п. ф-лы, 3 табл., 129 пр.

Изобретение относится к новым светочувствительным органическим системам на основе хромонов, предназначенным для применения в различных фотоуправляемых устройствах фотоники

Изобретение относится к хемилюминесцентным композициям, которые могут быть широко использованы в аналитической и биологической химии

Изобретение относится к составам, содержащим электропроводящие органические материалы, в частности к составам для получения инжектирующих дырки или транспортирующих дырки слоев в электролюминесцентных устройствах, органических элементах солнечных батарей, органических лазерных диодах, органических тонкопленочных транзисторах или органических полевых транзисторах, или для получения электродов или электропроводных покрытий

Изобретение относится к бис[2-(тозиламино)бензилиден-N-алкилиминатам]цинка общей формулы где Ts=тозил, R=C7-C18 алкил
Наверх