Способ получения поли-n,n-диметил-3,4-диметиленпирролидиний хлорида



Способ получения поли-n,n-диметил-3,4-диметиленпирролидиний хлорида
Способ получения поли-n,n-диметил-3,4-диметиленпирролидиний хлорида
Способ получения поли-n,n-диметил-3,4-диметиленпирролидиний хлорида

Владельцы патента RU 2372333:

Закрытое акционерное общество "АЛЬФА-ТЭК" (RU)

Изобретение относится к способам получения гомополимеров на основе диаллиламина, в частности к способу получения поли-N,N-диметил-3,4-диметиленпирролидиний хлорида. Способ включает в себя полимеризацию в присутствии диметилаллиламина или аллилового спирта в количестве 0,001-0,1 моль на моль мономера. Молекулярный вес регулируют соотношением мономер-инициатор. В качестве инициатора используют гидроперекись трет-бутила. Реакцию проводят при температуре 60-90°С. В соответствии с данным изобретением можно получить полимеры с высокой электропроводностью. 2 з.п. ф-лы, 3 табл.

 

Изобретение относится к способам получения и свойствам гомополимеров на основе диаллиламина, а именно к способам получения поли-N,N-диметил-3,4-диметиленпирролидиний хлорида.

Среди электропроводящих неокрашенных полимеров наибольшее распространение получили ионные (катионные и анионные) полиэлектролиты [1]. Поли-N,N-диметил-3,4-диметиленпирролидиний хлорид (ПДМПХ) является катионным полиэлектролитом.

Поли-N,N-диметил-3,4-диметиленпирролидиний хлорид - водорастворимый электропроводящий многофункциональный полимер, сочетающий в себе высокую поверхностную активность, комплексообразующую и флокулирующую способность, а также отличные биологические свойства в отношении микроорганизмов.

Наличие этих свойств обуславливает создание новых электропроводящих материалов нового поколения флокулянтов и коагулянтов, сорбентов, фильтрующих сред, материалов многоцелевого назначения, лекарственных и дезинфекционных препаратов.

Известен способ получения высокомолекулярного полидиметил-диаллиламмоний хлорида путем полимеризации диметилдиаллиламмоний хлорида в присутствии радикальных инициаторов [2]. Полимеризацией полидиметилдиаллиламмоний хлорида в водном растворе в присутствии гидроперекиси трет-бутила при 30-60°С или в растворе диметилсульфоксида в присутствии персульфата аммония при 30°С получены полидиметилдиаллиламмоний хлориды с характеристической вязкостью [η] соответственно 0,20-0,59 или 0,72-1,36 [3].

Для создания материалов с оптимальной электропроводностью необходимо использовать полимеры низкого и среднего молекулярного веса, так как в полимерах высокого молекулярного веса резко уменьшается подвижность ионов. Кроме того, полимеры низкого и среднего молекулярного веса более технологичны на стадиях получения полимера и материалов на его основе (лучше растворяются, имеют меньшую вязкость концентрированных растворов, лучше совмещаются с другими компонентами при создании растворов и композиций и т.п.) [4].

Недостатком известных до настоящего времени методов получения гомополимеров на основе диаллиламина является образование полимеров сравнительно низкой электропроводности σν<1,9·10-6 См-1см-1, что значительно снижает область применения полимеров.

Наличие огромного положительного заряда на макроцепи, природа аниона, определенное строение и структура молекулы полимера полидиметилдиметиленпирролидиний хлорида в сочетании с активаторами обуславливают высокие биологические свойства предлагаемого полимера.

Целью данного изобретения является разработка новых методов получения полимеров методами регулирования молекулярных весов и структуры полимеров, создание полимеров с высокой электропроводностью.

Поставленная цель достигается полимеризацией диметилдиаллиламмоний хлорида в присутствии моноаллильного соединения в количестве 0,001-0,1 моль на моль мономера и методом регулирования молекулярных весов изменением соотношения мономер и инициатор. Реакцию проводят при температуре 60-90°С. В качестве радикального инициатора целесообразно использовать гидроперекись трет-бутила, а в качестве моноаллильного соединения - диметиаллиламин, аллиловый спирт.

Пример 1

В градуированную стеклянную ампулу объемом 10 мл помещают 2 г диметилдиаллиламмоний хлорида, 0,0178 г 90%-ного бензольного раствора гидроперекиси трет-бутила и добавляют такое количество дистиллированной воды, чтобы суммарный объем раствора составил 3,1 мл. Ампулу закрывают, помещают в термостат и выдерживают там при 60°С в течение 15 часов. После этого ампулу охлаждают до комнатной температуры, содержимое разбавляют 2 мл дистиллированной воды и осаждают в 30 мл ацетона. Выпавший осадок отфильтровывают, промывают ацетоном и сушат в вакууме над Р2О5 при 50°С до постоянного веса. Выход и свойства полученного полимера приведены в табл.1 (п/п 3) (C8H16NCl)n.

Рассчитано, %: С 59.44; Н 9.90; N 8.67.

Найдено, %: С 59.10; Н 10.50; N 8.63.

Вязкость полимера определяют в 2 н. водном растворе NaCl при 30°С. Электрическое сопротивление /ρν, Ом·см/ измеряют при 20°С и относительной влажности 65%.

Аналогично проводят полимеризацию, выделение и изучение свойств полидиметилдиметиленпирролидиний хлоридов, условия получения и характеристики которых представлены в таблице 1 (п/п 1, 2, 4-6).

Пример 2

В градуированную стеклянную ампулу объемом 10 мл помещают 2 г диметилдиаллиламмоний хлорида, 0,0178 г 90%-ного бензольного раствора гидроперекиси трет-бутила, 0,168 г диметилаллиламина в виде 20%-ного водного раствора и добавляют такое количество дистиллированной воды, чтобы суммарный объем раствора составил 3,1 мл. Ампулу закрывают, помещают в термостат и выдерживают там при 60°С в течение 15 часов. После этого ампулу охлаждают до комнатной температуры, содержимое разбавляют 2 мл дистиллированной воды и осаждают в 30 мл ацетона. Выпавший осадок отфильтровывают, промывают ацетоном и сушат в вакууме над P2O5 при 50°С до постоянного веса. Выход и свойства полученного полимера приведены в табл.1 (п/п 7) (C8H16NCl)n.

Рассчитано, %: С 59.44; Н 9.90; N 8.67.

Найдено, %: С 59.25; Н 10.41; N 8.64.

Вязкость и электрическое сопротивление полимеров измеряют, как описано в примере 1. Аналогично проводят полимеризацию, выделение и изучение свойств полидиметилдиметиленпирролидиний хлоридов, условия получения и характеристики которых представлены в таблице 1 (п/п 8-10).

Пример 3

В градуированную стеклянную ампулу объемом 10 мл помещают 2 г диметилдиаллиламмоний хлорида, 0,0178 г 90%-ного бензольного раствора гидроперекиси трет-бутила, 0,00168 г диметилаллиламина в виде 5%-ного водного раствора и добавляют такое количество дистиллированной воды, чтобы суммарный объем раствора составил 3,1 мл. Ампулу закрывают, помещают в термостат и выдерживают там при 90°С в течение 15 часов. После этого ампулу охлаждают до комнатной температуры, содержимое разбавляют 2 мл дистиллированной воды и осаждают в 30 мл ацетона. Выпавший осадок отфильтровывают, промывают ацетоном и сушат в вакууме над P2O5 при 50°С до постоянного веса. Выход и свойства полученного полимера приведены в табл.1 (п/п 13) (C8H16NCl)n.

Рассчитано, %: С 59.44; Н 9.90; N 8.67.

Найдено, %: С 59.31; Н 9.92; N 8.68.

Вязкость и электрическое сопротивление полимерных образцов измеряют, как описано в примере 1. Аналогично проводят полимеризацию, выделение и изучение свойств полидиметилдиметиленпирролидиний хлоридов, охарактеризованных в таблице 1 (п/п 11, 12, 14).

Пример 4

В градуированную стеклянную ампулу объемом 10 мл помещают 2 г диметилдиаллиламмоний хлорида, 0,0178 г 90%-ного бензольного раствора гидроперекиси трет-бутила, 0,116 г аллилового спирта в виде 8%-ного водного раствора и добавляют такое количество дистиллированной воды, чтобы суммарный объем раствора составил 3,1 мл. Ампулу закрывают, помещают в термостат и выдерживают там при 60°С в течение 15 часов. Содержимое после охлаждения до комнатной температуры разбавляют 2 мл дистиллированной воды и осаждают в 30 мл ацетона. Выпавший осадок отфильтровывают, промывают ацетоном и сушат в вакууме над P2O5 при 50°С до постоянного веса. Выход и свойства полученного полимера приведены в табл.1 (п/п 15) (C8H16NCl)n.

Рассчитано, %: С 59.44; Н 9.90; N 8.67.

Найдено, %: С 59.40; Н 10.09; N 8.71.

Вязкость и электрическое сопротивление полимерных образцов измеряют, как описано в примере 1. Аналогично проводят полимеризацию, выделение и изучение свойств полидиметилметиленпирролидиний хлорида, охарактеризованного в таблице 1 (п/п 16).

Все полученные полидиметилдиметиленпирролидиний хлориды представляют собой белые гигроскопические порошки, хорошо растворимые в воде, метаноле и этаноле и нерастворимые в других органических растворителях.

Полученные указанными способами полимеры обладают повышенной электропроводностью по сравнению с ранее известными полимерами и могут быть использованы при создании новых веществ и материалов.

На основании данных химического анализа, ЯМР- и ИК-спектров было установлено, что полимеры, полученные на основе ДМДААХ, имеют следующую структуру и строение поли-N,N-диметил-3,4-диметиленпирролидиний хлорида:

На основании изучения радикальной полимеризации диаллилдиметиламмоний хлорида на персульфате аммония при концентрации мономера от 0.7 до 4.0 моль/л в интервале температур 30-100°С, а также исследования механизма передачи цепи на мономер в случае применения моноаллильных мономеров (аллилдиметиламин, аллиловый спирт), при изменении молярного соотношения мономер: инициатор 50:1; 25:1; 9:1 созданы новые методы регулирования молекулярных весов при полимеризации диаллиловых мономеров. В этих условиях были синтезированы полимеры с молекулярным весом 400, 2500, 9000, 16000 и др. (таблица 2).

Таблица 2
Молекулярная масса и характеристическая вязкость образцов поли N,N-диметил-3,4-диметиленпироллидиний хлорида
№№ Mw [η], дл/г
1 100000-200000 0,486
2 200000-350000 0,860
3 400000-500000 1,032

Анализ экспериментальных данных, полученных при исследовании структуры рассматриваемых поличетвертичных солей, свидетельствует также о том, что во всех исследованных системах (для всех синтезированных четвертичных солей) образующиеся при полимеризации макромолекулы содержат только пятичленные циклические фрагменты в циклолинейных цепях, причем предпочтительно в цис-конфигурации (соотношение цис:транс структур соответствует 5-6:1) (табл.3).

Таблица 3
Химические сдвиги 13С ЯМР полидиалкилдиметиленпирролидиний хлоридов и модельных соединений
Модельные Соединения* Атом углерода δ, м.д.
цис-
транс- Полимеры** Атом углерода δ, м.д.
цис-
транс-
2,5 73,9 75,0 2,5 66,8 67,8
3,4 34,9 41,1 3,4 39,1 43,6
N,N,3,4-тетраметил-пирролидиний галогенид CH3 14,6 16,6 СН2 38,6 43,3
55,1 27,1 30,3
N+-CH3 57,3 29,9
58,3
56,4 -CH2 55,0
-СН2- 9,1
CH3 8,4 8,8
*Сдвиги 13С определены относительно диоксана как внешнего стандарта
**Сдвиги 13С определены относительно CH3OD как внутреннего стандарта по формуле:

Практически не наблюдается каких-либо изменений в структуре образующихся при полимеризации полимеров при изменении концентрации мономеров, природы N-алкильного заместителя и противоиона, при варьировании природы растворителя. В ИК-спектрах отсутствуют полосы C=С в области 1645-1675 см-1.

Химическое строение синтезированных полидиметилдиметиленпирролидиний хлоридов предопределяет получение многочисленных и разнообразных по составу и структуре водорастворимых полимеров с молекулярным весом от нескольких сот до миллиона, а также нерастворимых трехмерных полимеров.

Изменение строения макроструктуры полимеров и концентрации положительного заряда в макроцепи позволяют планомерно регулировать их свойства и расширить возможность применения. Установлено, что наличие значительного положительного заряда на макроцепи, определенное строение и структура полимеров обуславливает их необычные свойства.

Таким образом, представленные в работе экспериментальные данные дают основание полагать, что в настоящее время разработана концепция создания нового поколения полифункциональных веществ, полимеров и материалов. Широкое развитие этих работ, а также получение опытных и промышленных образцов новых материалов позволит решить ряд проблем в медицине, ветеринарии, сельском хозяйстве, а также при реализации в смежных областях науки и техники.

Источники информации

1. R.J.Dolinski, W.R.Dean, Polim. News, 2, №3-4, 1974, р.15.

2. Патент США №3288770, Кл.260-88.3, опубл. 1966 г.

3. J.Negi, S.Hasda, O.Jshizuka. J.Polim.Sci., AI, 5, №8, 1967, p.1951.

4. В.А.Кабанов, Д.А.Топчиев / Полимеризация ионизующихся мономеров. / М., Наука, 1975 г.

5. Авторское свидетельство №92015047/26 Способ очистки маломутных цветных вод. / М.Г.Новиков, И.Н.Дариенко, Ф.В.Кармазинов, М.И.Черкашин. / М., 1992 г.

1. Способ получения поли-N,N-диметил-3,4-диметиленпирролидиний хлорида под действием инициатора радикальной полимеризации, отличающийся тем, что, с целью увеличения электропроводности целевого продукта, полимеризацию проводят в присутствии моноаллильного соединения в количестве 0,001-0,1 моль на моль мономера.

2. Способ по п.1, отличающийся тем, что для получения низкомолекулярных продуктов (молекулярный вес 500-5 тыс.) полимеризацию мономера проводят при молярном соотношении мономер:инициатор от 9:1 до 50:1.

3. Способ по п.1, отличающийся тем, что строение и структура предлагаемого полимера, его молекулярный вес, природа катиона и аниона определяют его электропроводящие, комплексообразующие, поверхностно-активные и биологические в отношении микроорганизмов свойства.



 

Похожие патенты:

Изобретение относится к технологии получения катализаторов полимеризации и сополимеризации сопряженных диенов и может быть использовано в промышленности синтетических каучуков.

Изобретение относится к технологии получения катализаторов полимеризации и сополимеризации сопряженных диенов и может быть использовано в промышленности синтетических каучуков.
Изобретение относится к способам получения диалкилфосфатов редкоземельных элементов (РЗЭ), которые широко используются в качестве компонентов катализаторов полимеризации сопряженных диенов и могут найти применение при производстве цис-1,4-гомополимеров и цис-1,4-сополимеров в промышленности синтетических каучуков.

Изобретение относится к области получения каучуков растворной полимеризации полибутадиена и статистических сополимеров бутадиена со стиролом, которые используются в производстве шин с высокими эксплуатационными характеристиками и пластических масс.

Изобретение относится к винил·цис-полибутадиеновому каучуку, полученному путем одновременного соединения 1,2-полибутадиена, характеризующегося температурой плавления, равной 170°С или более, и полиизопрена, характеризующегося низкой температурой плавления, и диспергирования их в матрице цис-полибутадиенового каучука.

Изобретение относится к каталитической системе, применяемой для получения полибутадиенов, к способу получения указанной каталитической системы и к способу получения полибутадиенов с помощью указанной каталитической системы.
Изобретение относится к области химической технологии, в частности к жидкой композиции карбоксилатов редкоземельных элементов, к процессу их получения и способам полимеризации сопряженных диенов в присутствии каталитической системы, содержащей карбоксилаты редкоземельных соединений.

Изобретение относится к способу получения сополимера, используемого в резиновой смеси, сшиваемой при помощи серы, с пониженным гистерезисом в сшитом состоянии, включающего два блока, в котором один из блоков состоит из полиизопрена, а другой - из стиролдиенового эластомера, отличного от полиизопрена, и к резиновой смеси для протекторов шин.

Изобретение относится к области переработки 1,3-бутадиенсодержащих смесей углеводородов C4 с получением полимеров или сополимеров 1,3-бутадиена. .
Изобретение относится к области органического синтеза, в частности способу получения низкомолекулярного N-поливинилпирролидона, используемого в медицинских целях.
Изобретение относится к химии полимеров, в частности к комплексам поли-N-винилкарбазола с фуллереном, которые могут быть использованы в качестве регистрирующих сред для голограмм, фотосенсибилизаторов и др.

Изобретение относится к гидрофильным адгезивным полимерам, получаемым ковалентной или нековалентной сшивкой, в частности к гидрогелевым и биоадгезивным композициям, содержащим один или более водонерастворимых гидрофильных адгезивных полимеров, и к способам использования указанных композиций в терапевтических применениях, таких как системы доставки лекарства, например местные, трансдермальные, через слизистую оболочку, ионтофоретические, медицинские покрытия кожи, повязки на раны и заживляющие повязки, и биомедицинские электроды, а также в косметических применениях, таких как продукты, отбеливающие зубы.

Изобретение относится к области медицины и фармакологии и касается фармацевтической антимикробной композиции, представляющей собой комплекс поливинилпирролидона и метронидазола формулы (1), где n=76-276, m=5-40, содержащий 9-19% метронидазола, а также способа получения указанного комплекса.

Изобретение относится к медицине и может быть использовано в терапии, стоматологии, гинекологии, хирургии, урологии и других областях, где возможно возникновение анаэробной или смешанной инфекции.

Изобретение относится к области синтеза новых полиэлектролитов катионного типа на основе трифторацетатов диаллиламинов - мономеров ряда N,N-диаллиламина (ДАА) (самого мономера ДАА и N,N-диаллил-N-метиламина (ДАМА)) и может быть использовано в различных областях народного хозяйства и, в частности, медицине.
Изобретение относится к химии полимеров, точнее к комплексам поли-N-винилпирролидона с повышенным содержанием фуллерена C 60, а также к способу получения этих комплексов.
Изобретение относится к области высокомолекулярной химии, а именно к способу получения водорастворимого полимерного катионита на основе диметилдиаллиламмонийхлорида, используемого в качестве флокулянтов, коагулянтов т.п.

Изобретение относится к получению пролонгированных антимикробных препаратов. .

Изобретение относится к получению водорастворимых высокомолекулярных катионных полиэлектролитов, которые используются в целлюлозно-бумажной промышленности при производстве бумаги, для ускорения процессов осаждения и фильтрования суспензий при очистке промышленных оборотных вод и бытовых сточных вод.

Изобретение относится к новым замещенным феноксиуксусным кислотам (I), в которых: Х представляет собой галоген, циано, нитро или С1-4алкил, который замещен одним или более чем одним атомом галогена; Y выбран из водорода, галогена или C1-С6алкила, Z представляет собой фенил, нафтил или кольцо А, где А представляет собой шестичленное гетероциклическое ароматическое кольцо, содержащее один или два атома азота, или может представлять собой 6,6- или 6,5-конденсированный бицикл, содержащий один атом О, N или S, или может представлять собой 6,5-конденсированный бицикл, содержащий два атома О, причем фенил, нафтил или кольца А все, возможно, замещены одним или более чем одним заместителем, независимо выбранным из галогена, CN, ОН, нитро, COR9, CO2R6, SO2 R9, OR9, SR9, SO2 NR10R11, CONR10R11 , NR10R11, NHSO2R9 , NR9SO2R9, NR6CO 2R6, NR9COR9, NR6CONR4R5, NR6SO 2NR4R5, фенила или C1-6 алкила, причем последняя группа, возможно, замещена одним или более чем одним заместителем, независимо выбранным из галогена; R1 и R2 независимо представляют собой атом водорода или С1-6алкильную группу, R4 и R5 независимо представляют собой водород, С3 -С7циклоалкил или C1-6алкил, R6 представляет собой атом водорода или C1-6алкил; R 8 представляет собой С1-4алкил; R9 представляет собой C1-6алкил, возможно, замещенный одним или более чем одним заместителем, независимо выбранным из галогена или фенила; R10 и R11 независимо представляют собой фенил, 5-членное ароматическое кольцо, содержащее два гетероатома, выбранных из N или S, водород, С3-С7циклоалкил или C1-6алкил, причем последние две группы, возможно, замещены одним или более чем одним заместителем, независимо выбранным из галогена или фенила; или R10 и R11 вместе с атомом азота, к которому они присоединены, могут образовывать 3-8-членное насыщенное гетероциклическое кольцо, возможно, содержащее один атом или более чем один атом, выбранный из О, S(O)n (где n=0, 1 или 2), NR8.
Наверх