Оптоэлектронный усилитель

Изобретение относится к оптоэлектронике для использования в оптических приемо-передающих системах. Технический результат - увеличение мощности переизлучения без использования громоздких узлов. Достигается это благодаря введению электролюминисцентного преобразователя, объектива резонатора, двух повернутых отражательных зеркал и повернутого полупрозрачного зеркала. При этом оптический выход светодиода связан с первым оптическим входом повернутого полупрозрачного зеркала, имеющего оптический выход, связанный через электролюминисцентный преобразователь, через объектив, через резонатор с оптическим входом первого повернутого отражательного зеркала, оптический выход которого связан с оптическим входом второго повернутого отражательного зеркала, имеющего оптический выход, связанный с вторым оптическим входом вышеупомянутого повернутого полупрозрачного зеркала. 1 ил.

 

Изобретение относится к области оптоэлектроники и может быть использовано в оптических приемо-передающих системах.

Известен оптоэлектронный усилитель, представленный в патенте автора №2239174, осуществляющий переизлучение света. В нем свет от источника излучения, которое может быть и лазерное, усиливается в оптоэлектронном преобразователе. Далее свет проходит через элементы, обеспечивающие его обратную связь. Однако преобразователь имеет низкую чувствительность, что не позволяет увеличить мощность переизлучения света.

Известен оптоэлектронный усилитель, представленный в книге Криксунов Л.З. «Справочник по инфракрасной технике», 1978, стр.310. Он состоит из фоторезистора и светодиода. Свет от источника излучения, представляющий из себя, например, лазер или лазерный переизлучатель, облучает фоторезистор, преобразующий световой сигнал в электрический, поступающий далее на вход светодиода. Последний излучает свет, мощность которого превышает мощность света, падающего на фоторезистор. В результате реализуется усиление переизлученного светодиодом света. Однако для увеличения мощности переизлучения света необходимо использовать громоздкие узлы.

С помощью предлагаемого устройства осуществляется увеличение мощности переизлучения света без использования громоздких узлов. Достигается это введением электролюминисцентного преобразователя, объектива, резонатора, двух повернутых отражательных зеркал и повернутого полупрозрачного зеркала, при этом оптический выход светодиода связан с первым оптическим входом полупрозрачного зеркала, имеющего оптический выход, связанный через электролюминисцентный преобразователь, через объектив, через резонатор с оптическим входом первого повернутого отражательного зеркала, оптический выход которого связан с оптическим входом второго повернутого отражательного зеркала, имеющего оптический выход, связанный с вторым оптическим входом вышеупомянутого повернутого полупрозрачного зеркала.

На чертеже и в тексте приняты следующие обозначения:

1 - источник излучения;

2 - фоторезистор;

3 - светодиод;

4 - повернутое отражательное зеркало;

5 - повернутое полупрозрачное зеркало;

6 - электролюминисцентный преобразователь;

7 - объектив;

8 - повернутое отражательное зеркало;

9 - резонатор,

при этом оптический выход источника излучения 1 через фоторезистор 2 связан с оптическим входом светодиода 3, имеющим оптический выход, связанный с первым оптическим входом повернутого полупрозрачного зеркала 5, имеющего оптический выход, связанный через электролюминисцентный преобразователь 6, через объектив 7, через резонатор 9 с оптическим входом повернутого отражательного зеркала 8, оптический выход которого связан с оптическим входом повернутого отражательного зеркала 4, имеющего оптический выход, связанный с вторым оптическим входом вышеупомянутого повернутого полупрозрачного зеркала 5.

Работа устройства осуществляется следующим образом. Источник излучения 1 излучает свет, который поступает на оптический вход фоторезистора 2. Источник 1 может представлять из себя оптический передатчик, лазер, в том числе и импульсный или отражатель лазерного излучения. Фоторезистор 2 преобразует оптический сигнал в электрический, поступающий с выхода фоторезистора на вход светодиода 3, преобразующий электрический сигнал в оптический. Световой сигнал на оптическом выходе светодиода 3 имеет большую мощность, чем на входе фоторезистора 2. С оптического выхода светодиода усиленный световой сигнал поступает на первый оптический вход повернутого полупрозрачного зеркала 5, с оптического выхода которого оптический сигнал далее поступает в электролюминисцентный преобразователь 6, который еще более усиливает световой сигнал и изменяет его спектр. Усиление преобразователя может составлять значение 104.

Пример конкретного исполнения электролюминисцентного преобразователя представлен в вышеупомянутом справочнике по инфракрасной технике на стр.309-310, рис.6.70, а пример исполнения фоторезистора с светодиодом представлен на этой же странице 310, рис.6.71. Усиленная световая энергия с оптического выхода преобразователя 6 поступает через объектив 7 в резонатор 9. Объектив формирует расходимость луча, которая облучает активный слой резонатора 9. В качестве активного слоя может быть применен кристалл. При этом частота излучения резонатора 9 может быть равна частоте излучения света от источника излучения 1.

В качестве узла накачки используется преобразователь 6, а частота света с его оптического выхода превышает частоту излучения резонатора 9. При этом подбирается электролюминисцентный преобразователь с такой частотой излучения люминофора, обеспечивающий наибольшую мощность излучения резонатора 9. Излученный резонатором 9 свет последовательно отражается от повернутых отражательных зеркал 8, 4 и поступает на второй оптический вход вышеупомянутого повернутого полупрозрачного зеркала 5, от которого также отражается и снова поступает в электролюминисцентный преобразователь 6.

Таким образом, благодаря циркуляции по контуру осуществляется еще большее усиление света и реализуется обратная связь, которая компенсирует потери световой энергии при прохождении ее через полупрозрачное зеркало 5. Кроме того, не требуется применение громоздких ламп накачки. Величина усиления устройства может иметь значение 1010.

Предлагаемое устройство может быть использовано в оптических локационных системах, увеличивая дальность их действия.

Устройство может быть использовано также в узлах связи для ретрансляции оптической информации, в том числе и по волоконно-оптическим линиям.

Оптоэлектронный усилитель, состоящий из источника излучения, фоторезистора и светодиода, где оптический выход источника излучения через фоторезистор связан с оптическим входом светодиода, отличающийся тем, что вводится электролюминесцентный преобразователь, объектив, резонатор, два повернутых отражательных зеркала и повернутое полупрозрачное зеркало, при этом оптический выход светодиода связан с первым оптическим входом повернутого полупрозрачного зеркала, имеющего оптический выход, связанный через электролюминесцентный преобразователь, через объектив, через резонатор с оптическим входом первого повернутого отражательного зеркала, оптический выход которого связан с оптическим входом второго повернутого отражательного зеркала, имеющего оптический выход, связанный с вторым оптическим входом вышеупомянутого повернутого полупрозрачного зеркала.



 

Похожие патенты:

Изобретение относится к области усиления оптического сигнала. .

Изобретение относится к лазерной технике и может быть использовано при создании мощных лазеров с активной средой, имеющей прямоугольное сечение, например мощных волноводных газовых лазеров с диффузионным охлаждением или слэб-лазеров.

Изобретение относится к волоконно-оптическим усилителям. .

Изобретение относится к волоконно-оптическому усилителю, а более конкретно к волоконно-оптическому усилителю, который позволяет повысить коэффициент усиления слабого сигнала, имеющего низкую интенсивность, за счет подсоединения оптического ответвителя в виде зеркала обратной связи.

Изобретение относится к области оптики, в частности к технике лазеров и оптических усилителей

Изобретение относится к технике сверхвысокочастотного (СВЧ) электромагнитного излучения и может быть использовано в системах передачи информации и транспортировки импульсов электромагнитного излучения (ЭМИ)

Изобретение относится к волоконному одночастотному лазеру со сканированием частоты. Указанное устройство содержит схему волоконного лазерного источника с пассивным сканированием частоты, в котором временная динамика состоит из периодической группы импульсов. При этом каждый импульс является одночастотным лазерным излучением, а частота генерации изменяется от импульса к импульсу. Также выходное лазерное излучение полностью поляризовано, а состояния поляризации импульсов внутри принимают одно из двух значений. По этой причине импульсы легко пространственно разделяются с помощью поляризационного фильтра. В таком случае выходное лазерное излучение лазерного источника состоит из периодических одночастотных импульсов с одним поляризационным состоянием. Технический результат заключается в улучшении амплитудной стабильности интенсивности выходного лазерного излучения, в регуляризации временной динамики интенсивности лазерного излучения, в улучшении поляризационных и спектральных качеств выходного лазерного излучения и в обеспечении возможности сохранения стабильной поляризации лазерного излучения на выходе, а также в расширении области применения и ассортимента устройств данного назначения. 3 н. и 56 з.п. ф-лы, 7 ил.

Изобретение относится к лазерной технике. В лазерном устройстве для генерации и/или преобразования лазерного излучения используется пластинчатый оптический элемент в виде прямоугольного параллелепипеда, имеющего входные и выходные окна. Преобразуемое излучение направляется в пластинчатый элемент так, что после преломления на поверхности входного окна оно проходит к выходному окну, отражаясь многократно от боковых граней под углом, зависящим от фактических линейных размеров пластинчатого элемента в соответствии с формулой α=arctg(Am/Bk), где α - проекция угла отражения оптического излучения от продольной боковой грани на плоскость, параллельную широкой грани, А, В - соответственно фактические продольный и поперечный размеры этого элемента, m и k - взаимно простые целые числа, при этом k равно числу пересечений пучком продольной осевой линии пластинчатого элемента, а m равно числу пересечений пучком поперечной осевой линии этого элемента. Технический результат заключается в обеспечении возможности снижения влияния ошибок линейных размеров пластинчатого элемента на положение выходного луча. 6 з.п. ф-лы, 16 ил.

Изобретение относится к лазерной технике. Лазерный усилитель видимого и ближнего инфракрасного диапазонов спектра с продольной накачкой содержит оптический элемент из объемного твердотельного оптического усиливающего материала, легированного оптически активными редкоземельными ионами, содержащий сформированную через боковую полированную плоскость, параллельную геометрической оси элемента лазерного усилителя, методом прямой фемтосекундной записи вдоль и вокруг оптической оси элемента оболочку оптического волновода из областей с пониженным относительно оптического материала показателем преломления. Причем внутренний поперечный размер оптического волновода, ограниченного оболочкой, более 100 мкм и менее 5000 мкм. Технический результат заключается в обеспечении возможности повышения оптической эффективности усилителя и максимальной допустимой мощности оптического излучения. 2 н. и 24 з.п. ф-лы, 13 ил.
Наверх