Состав и способ изготовления безобжигового хромомагнезитового жаростойкого бетона



Владельцы патента RU 2377219:

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ" (ДГТУ) (RU)

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении изделий из хромомагнезитовых безобжиговых жаростойких бетонов. Состав для изготовления безобжигового хромомагнезитового жаростойкого бетона содержит, мас.%: хромомагнезитовый заполнитель 65-87, тонкомолотый хромомагнезит 6-16, натриевая силикат-глыба в виде наноразмерных частиц 2-4, тонкомолотый магниевый концентрат 5-15, вода из расчета В/Т 0,12-0,14. Способ изготовления безобжигового хромомагнезитового жаростойкого бетона из указанного выше состава заключается в переводе натриевой силикат-глыбы в наноразмерные частицы путем дегидратационного диспергирования гидратированной тонкомолотой до удельной поверхности 2500-3000 см2/г натриевой силикат-глыбы при температуре 200-600°С, перемешивании хромомагнезитового заполнителя, тонкомолотых хромомагнезита и магниевого концентрата с добавлением в их смесь при перемешивании имеющей температуру 80-90°С водной смеси натриевой силикат-глыбы в виде наноразмерных частиц и затем воды с температурой 80-90°С, перемешивании полученной смеси, формовании из нее изделий и обработки их термоударом при температуре 250-300°С в течение 1-2 час. Причем тонкомолотый магниевый концентрат получают путем сухого помола. Технический результат - повышение прочности и термической стойкости бетонов. 2 н. и 1 з.п. ф-лы.

 

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении изделий из безобжигового хромомагнезитового жаростойкого бетона.

Технический результат - повышение прочности и термической стойкости изделий из хромомагнезитового жаростойкого безобжигового бетона.

Известен способ изготовления жаростойких бетонов на основе композиций из природных и техногенных стекол [1].

Недостатком известного способа является использование в качестве связующего силикат-глыбы размером частиц не менее 10-100 микрон, которые в точке растворения в вяжущем или бетоне образуют жидкое стекло, которое невозможно равномерно распределять в массе твердеющего бетона, что также приводит к увеличению плавнеобразующего составляющего и снижению температуры службы бетона.

Известен также способ изготовления безобжиговых огнеупоров [2] из состава, который включает натриевую силикат-глыбу с силикатным модулем 2,7-3, огнеупорный заполнитель, содержащий кристаллический кварцит, тонкомолотый огнеупорный наполнитель, где предусматривается нагрев компонентов до 80-90°С при сухом смешивании, затворение нагретой до 80-90°С водой, формование прессованием при 40 МПа и сушка при 250-300°С в течение 1-2 ч. Недостатком известного способа является то, что частицы силикат-глыбы имеют размеры более 100 мк и поэтому требуется большее время смешивания и большее усилие прессования, что приводит к расслоению изделий при формовании их прессованием при 40 МПа, а также не достигается равномерного распределения в смеси образовавшегося жидкого стекла.

Наиболее близкими к заявляемому техническому решению по совокупности признаков, т.е. прототипами, являются состав и способ [3], где состав содержит силикат-глыбу с силикатным модулем 2,7-3, огнеупорный заполнитель, тонкомолотый огнеупорный наполнитель, где предусматривается сухое смешивание, затворение водой, формование и сушка при 85-200°С.

Основные показатели по прототипу: прочность после сушки при 200°С IP-24 МПа, термическая стойкость 10-15 (1300°С - вода) число теплосмен.

Недостатком известного способа является то, что частицы силикат-глыбы имеют размеры более 100 мк, которые в точке растворения в вяжущем или в бетоне образуют высокомодульное жидкое стекло, которое невозможно равномерно распределять в массе твердеющего бетона, что приводит к снижению прочности после сушки и снижению термической стойкости изделий, а также магниевое составляющее в основном находится в связанном виде с хромомагнезитом, т.е. свободного кристаллического и аморфного магнезита в смеси мало и поэтому образование низкотемпературных силикатов магния и высокотемпературных форстеритов и шпинелей происходит неполностью.

Цель изобретения: повышение прочности и термической стойкости хромомагнезитовых жаростойких безобжиговых бетонов. Поставленная цель достигается тем, что состав для изготовления безобжигового хромомагнезитового жаростойкого бетона, включающий хромомагнезитовый заполнитель, тонкомолотый хромомагнезит, натриевую силикат-глыбу и воду, содержит натриевую силикат-глыбу в виде наноразмерных частиц и дополнительно - тонкомолотый магниевый концентрат при следующем соотношении компонентов, мас.%:

Хромомагнезитовый заполнитель 65-87
Тонкомолотый хромомагнезит 6-16
Натриевая силикат - глыба в виде
наноразмерных частиц 2-4
Тонкомолотый
магниевый концентрат 5-15
Вода из расчета В/Т 0,12-0,14

Указанная цель достигается также тем, что способ изготовления безобжигового хромомагнезитового жаростойкого бетона из состава указанного выше заключается в переводе натриевой силикат-глыбы в наноразмерные частицы путем дегидратационного диспергирования гидратированной тонкомолотой до удельной поверхности 2500-3000 см2/г натриевой силикат-глыбы при температуре 200-600°С, перемешивании хромомагнезитового заполнителя, тонкомолотых хромомагнезита и магниевого концентрата с добавлением в их смесь при перемешивании имеющей температуру 80-90°С водной смеси натриевой силикат-глыбы в виде наноразмерных частиц и затем воды с температурой 80-90°С, перемешивании полученной смеси, формовании из нее изделий и обработки их термоударом при температуре 250-300°С в течение 1-2 час. Причем тонкомолотый магниевый концентрат получают путем сухого помола.

Исходные компоненты, входящие в составе сырьевой смеси для изготовления безобжигового жаростойкого хромомагнезитового бетона, следующие:

хромомагнезитовый заполнитель требуемых фракций;

тонкомолотые хромомагнезит и тонкомолотый магниевый концентрат, которые могут быть приготовлены совместным помолом в шаровой мельнице до удельной поверхности 2500-3000 см2/г;

силикат-глыба - отход Огнинского стекольного завода, переведенный в наноразмерные частицы путем дегидратационного диспергирования гидратированных частиц натриевой силикат глыбы с удельной поверхностью 2500-3000 см2/г при температурах 200-600°С 2-4,;

тонкомолотый до удельной поверхности 2500-3000 см2/г магниевый концентрат, получаемый при очистке высокоминерализованных термальных вод, имеющий состав, мас.%: MgO 80-88; СаО 10-18; Fe2O3+Al2O3 0,2-2,2; SiO2 1,6-3,5;

вода - любая, кроме минеральных вод.

Использование заявленной совокупности существенных признаков позволяет получить указанный технический результат, а именно: увеличение прочности и термической стойкости изделий.

Пример. Предварительно отдозированную часть хромомагнезитового заполнителя измельчают в шаровой мельнице сухого помола до удельной поверхности 3000 см2/г, также измельчают магниевый концентрат, затем в подогреваемую бетономешалку с укрепленными на ее корпусе тэнами и снабженную теплоизоляцией загружают, в мас.%: хромомагнезитовый заполнитель фракции… 0,63 мм - 77, тонкомолотый хромомагнезит - 11 и тонкомолотый магниевый концентрат - 10 и смешивают в сухом виде в течение 2-3 мин, при непрерывном смешивании добавляют подогретую до 85°С водную смесь наноразмерных частиц - с размером частиц… 10-12 нм силикат-глыбы, полученную в барбатере, содержание наночастиц - 3, при непрерывном смешивании дополнительно добавляют подогретую до 85°С воду из расчета водотвердое отношение 0,14, смешивание массы продолжают 3-4 мин. Из этой массы прессуют изделия при удельном давлении 30 МПа и проводят термообработку изделий термоударом при 300°С в сушильной камере в течение 1,5 ч.

Наноразмерные частицы силикат глыбы получают следующим образом. Тонкомолотую силикат-глыбу с удельной поверхностью 2500-3000 см2/г (для данного примера 3000 см2/г) гидратируют и загружают в кюветы, расположенные в кварцевой трубке, которая в свою очередь расположена внутри трубчатой печи. С одной стороны в кварцевую трубку подают острый водяной пар, а другая сторона подсоединяется к охладителю конденсата, кондесатосборнику и барбатеру с водой. При повышении температуры в печи до 200-600°С (для данного примера 500°С) происходит дегидратационное диспергирование и наночастицы с размером 10-12 нм уносятся паром в конденсатосборник и в барбатер. Суммарное содержание наноразмерных частиц в водной смеси из барбатера определяют качественным и количественным хроматографическим анализом.

Способ обеспечивает прочность при сжатии после сушки 45-60 МПа, термическую стойкость 70-85 (800°С - вода), число теплосмен.

Показатели прочности при сжатии после сушки и термической стойкости следующие: прочность при сжатии после сушки 45-60 МПа, термическую стойкость 17-22 теплосмен (1300°С - вода), т.е. больше, чем в прототипе.

Предлагаемый состав и способ обеспечивают получение структурно-стабильного изделия без предварительного обжига, повышение прочности и термической стойкости изделий за счет полного растворения компонентов силикат глыбы и части аморфного и кристаллического кварца и магнезита, а также за счет равномерного распределения их в смеси в процессе смешивания.

Литература

1. Горлов Ю.П., Меркин А.П., Зейфман М.И., Тотурбиев Б.Д. Жаростойкие бетоны на основе композиций из природных и техногенных стекол. М.: Стройиздат, 1966. - 144 с.

2. Способ изготовления безобжиговых огнеупоров. Тотурбиев Б.Д. Батырмурзаев Ш.Д. А.С. СССР №1701693, БИ №48, 30.12.91.

3. Тотурбиев Б.Д. Строительные материалы на основе силикат-натриевых композиций. - М.: Стройиздат, 1988.

1. Состав для изготовления безобжигового хромомагнезитового жаростойкого бетона, включающий хромомагнезитовый заполнитель, тонкомолотый хромомагнезит, натриевую силикат-глыбу и воду, отличающийся тем, что он содержит натриевую силикат-глыбу в виде наноразмерных частиц и дополнительно тонкомолотый магниевый концентрат при следующем соотношении компонентов, мас.%:

Хромомагнезитовый заполнитель 65-87
Тонкомолотый хромомагнезит 6-16
Натриевая силикат-глыба в виде
наноразмерных частиц 2-4
Тонкомолотый магниевый концентрат 5-15
Вода из расчета В/Т 0,12-0,14

2. Способ изготовления безобжигового хромомагнезитового жаростойкого бетона из состава по п.1, заключающийся в переводе натриевой силикат-глыбы в наноразмерные частицы путем дегидратационного диспергирования гидратированной тонкомолотой до удельной поверхности 2500-3000 см2/г натриевой силикат-глыбы при температуре 200-600°С, перемешивании хромомагнезитового заполнителя, тонкомолотых хромомагнезита и магниевого концентрата с добавлением в их смесь при перемешивании имеющей температуру 80-90°С водной смеси натриевой силикат-глыбы в виде наноразмерных частиц и затем воды с температурой 80-90°С, перемешивании полученной смеси, формовании из нее изделий и обработки их термоударом при температуре 250-300°С в течение 1-2 ч.

3. Способ по п.2, отличающийся тем, что тонкомолотый магниевый концентрат получают путем сухого помола.



 

Похожие патенты:
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении изделий из магнезитовых бесцементных жаростойких бетонов, получаемых без предварительного обжига.
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении изделий из шамотных жаростойких бетонов, получаемых без предварительного обжига.
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении изделий из цирконовых безобжиговых жаростойких бетонов, получаемых без предварительного обжига.

Изобретение относится к строительным материалам, а именно к составу бесцементной строительной смеси и способу получения из нее бетонов и железобетонных изделий. .
Изобретение относится к строительным материалам, а именно к составу бесцементной строительной смеси и способу получения из нее бетона. .

Изобретение относится к области строительных материалов, в частности к добавкам, используемым в производстве бетонов, строительных растворов, железобетонных и специальных бетонных изделий.
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении строительных изделий и конструкций из жаростойких бетонов.

Изобретение относится к области строительных материалов и изделий, а именно к области активации цементных растворов путем механического воздействия на них, и может быть использовано в строительстве.
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении изделий из магнезитовых бесцементных жаростойких бетонов, получаемых без предварительного обжига.
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении изделий из шамотных жаростойких бетонов, получаемых без предварительного обжига.
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении изделий из цирконовых безобжиговых жаростойких бетонов, получаемых без предварительного обжига.

Изобретение относится к области строительства и может быть использовано при производстве строительных материалов для строительства промышленных объектов, жилых домов, коттеджей, сельскохозяйственных построек и т.д., в основном, для тепловой изоляции в виде плит, а также монолитной тепловой изоляции, например, кровель.
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении строительных изделий и конструкций из жаростойких бетонов.
Изобретение относится к составам для производства легковесных строительных материалов и может быть использовано для изготовления бетонных изделий, конструкций и монолита.
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении строительных изделий и конструкций из жаростойких бетонов.
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении изделий из кварцитовых жаростойких бетонов, получаемых без предварительного обжига.
Изобретение относится к производству строительных материалов и может быть использовано в промышленном строительстве при изготовлении изделий и конструкций из жаростойких бетонов.
Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления конструкций и изделий из жаростойких бетонов на основе золошлакового заполнителя и позволяет обеспечить возможность эффективного использования многотоннажных отходов промышленности.
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении изделий из магнезитовых бесцементных жаростойких бетонов, получаемых без предварительного обжига.
Наверх