Вихревая труба

Изобретение направлено на создание новой конструкции вихревой трубы. Вихревая труба содержит корпус с камерой энергетического разделения, на стороне вывода горячего потока которой размещены развихритель, дроссельное устройство и крышка, а на стороне вывода холодного потока - диафрагма и сопловой ввод разделяемого газа. Развихритель выполнен в виде одной, размещенной по центру, и/или нескольких, размещенных на соосных вихревой трубе окружностях плоских спиралей, примыкающих торцами к крышке и установленных таким образом, что закручивание спирали от ее периферии к центру совпадает с направлением вращения газового потока. Крышка снабжена сквозными соосными каждой спирали развихрителя отверстиями. Технический результат состоит в увеличении эффективности работы вихревой трубы при ее применении для разделения газового потока на два соответственно с низкой и высокой температурой, в более полезном использовании энергетического потенциала, закрученного с помощью соплового ввода потока. 1 з.п. ф-лы, 1 ил.

 

Настоящее изобретение относится к устройствам, использующим вихревой эффект разделения газового потока на две части, одна из которых имеет высокую, а другая - низкую температуру, и может быть широко применено в холодильной технике, в строительстве при создании систем кондиционирования воздуха и других отраслях хозяйства.

Вихревая труба в своем основном исходном варианте содержит корпус с камерой энергетического разделения, сопловой ввод потока газа, диафрагму, дроссельное устройство и трубы для вывода холодного и горячего потока (см., например, А.В.Мартынов, В.М.Бродянский «Что такое вихревая труба». М.: «Энергия», 1976 г., стр.6 и 7). Диафрагма и труба вывода холодного потока размещены на «холодном» конце вихревой трубы, т.е. на стороне установки соплового ввода. Соответственно, дроссельное устройство и труба вывода горячего потока размещены на противоположном «горячем» конце вихревой трубы.

Известна вихревая труба, на стороне вывода горячего потока которой установлен развихритель, изготавливаемый, в основном, в виде крестовины (см., например, Ш.А. Пиралишвили и др. «Вихревой эффект, эксперимент, теория, технические решения», М., изд. УНПЦ «ЭНЕРГОМАШ», 2000 г., стр.41-42).

Известны вихревые трубы с развихрителями, размещенными как на «горячем», так и на «холодном» концах (см., например, авторское свидетельство СССР №1677458, опубликовано 15.09.1991 года, бюл. №34).

Вышеупомянутые аналогичные настоящему изобретению технические решения обладают общим недостатком, связанным с низким коэффициентом полезного действия вихревой трубы.

Наиболее близким к настоящему изобретению является техническое решение по патенту России №2213914 «Способ вихревого энергоразделения потока и устройство его реализующее» (дата публикации - 10.10.2003 года). Собственно вихревая труба по данному изобретению содержит камеру энергетического разделения с многосопловым тангенциальным вводом разделяемого газа и диафрагмой вывода приосевого холодного потока. «Горячий» конец вихревой трубы, по сути, снабжен крышкой и развихрителем, выполненным в представленном варианте в виде перфорированной пластины. Недостатком данной конструкции, не рассматривая сложности заявленного способа, требующего ряда дополнительных устройств, является также недостаточный коэффициент полезного действия вихревой трубы из-за нерациональных потерь энергии разделяемого потока.

Техническая задача настоящего изобретения состоит в создании вихревой трубы с новым типом развихрителя.

Технический результат состоит в увеличении эффективности работы вихревой трубы при ее применении для разделения газового потока на два соответственно с низкой и высокой температурой, в более полезном использовании энергетического потенциала, закрученного с помощью соплового ввода потока.

Для достижения указанного технического результата в вихревой трубе, содержащей корпус с камерой энергетического разделения, на стороне вывода горячего потока которой размещены развихритель, дроссельное устройство и крышка, а на стороне вывода холодного потока - диафрагма и сопловой ввод разделяемого газа, развихритель выполнен в виде одной, размещенной по центру, и/или нескольких, размещенных на соосных вихревой трубе окружностях, плоских спиралей, примыкающих торцами к крышке и установленных таким образом, что закручивание спирали от ее периферии к центру совпадает с направлением вращения газового потока. Крышка снабжена сквозными соосными каждой спирали развихрителя отверстиями.

Сущность настоящего изобретения состоит в следующем.

В литературных источниках, касающихся принципа работы и конструирования вихревых труб, многократно отмечена роль А.П.Меркулова, сделавшего одно из первых плодотворных предложений, увеличивающих эффективность работы трубы при одновременном значительном снижении ее длины. Суть данного предложения состояла в оснащении вихревой трубы на ее «горячем» конце развихрителем, обычно выполняемом в виде крестовины (см., например, А.Д.Суслов и др. «Вихревые аппараты». М.: «Машиностроение», 1985 г., стр.31-33; Ш.А.Пиралишвили и др. «Вихревой эффект, эксперимент, теория, технические решения», М., изд. УНПЦ «ЭНЕРГОМАШ», 2000 г., стр.42). Установка развихрителя приводит к искусственному торможению вихревого потока на «горячем» конце камеры разделения, которое по гипотезе А.П.Меркулова создает благоприятные условия для формирования приосевого потока, направленного к диафрагме. Исследовались развихрители иных конструкций, однако экспериментальные материалы до сего дня не позволяют сформулировать достаточно четкие рекомендации по выбору конструкции развихрителя. Отмечают, что генерация колебаний при установке развихрителя в определенном диапазоне частот возможно является главным фактором повышения эффективности процесса. Следует особо отметить, что достаточно грубое торможение потока при установке развихрителя безусловно приводит к потере энергии потока и снижает положительный эффект установки развихрителя.

Для повышения эффективности вихревых труб предложено также вводить в камеру разделения дополнительный поток, что реализовано в прототипе изобретения. Показано экспериментально, что при большой массовой доле формируемый из дополнительного потока приосевой поток получает кинетическую энергию, составляющую незначительную часть первоначальной энергии вытекающего из сопла газа. Благодаря этому увеличение расхода охлажденного потока при введении в камеру разделения дополнительного потока приводит к повышению коэффициента полезного действия трубы.

Согласно современным представлениям, возмущения, возникающие в сдвиговых течениях, играют существенную роль в происходящих процессах теплообмена. В закрученных течениях это проявляется особенно отчетливо и своеобразно. Распад вихря приводит к появлению прецессии вихревого ядра. Известные на сегодня расчеты и компьютерная визуализация последних подтверждают наличие прецессирующего приосевого вихревого жгута и периодически расположенных вдоль оси крупномасштабных вихревых структур - вторичных вихревых течений (см., например, А.А.Фузеева «Численное моделирование температурной стратификации в вихревых трубах». Журнал «Математическое моделирование», 2006 год, т.18, №9, стр.113-120). Предполагают, что перенос массы этими вихрями в радиальном направлении в поле с наличием радиального градиента давления вносит значительный вклад в температурное разделение в процессе реализации квазихолодильных циклов.

Принципиально настоящее изобретение в ходе его экспериментальной проверки в значительной мере подтверждает высказанные выше соображения, носящие теоретический характер, но позволяющие в определенной мере объяснить эффект разделения потока на горячий и холодный в вихревой трубе. Особенности предложенного целесообразно рассмотреть при описании работы устройства.

Конструкция вихревой трубы по настоящему изобретению в его полном варианте приведена на чертеже.

Вихревая труба содержит корпус 1 с камерой энергетического разделения 2 и сопловым вводом 3 исходного газового потока. На стороне вывода холодного потока размещена диафрагма 4. На стороне вывода горячего потока размещена крышка 5 и дроссель 6 (в данном варианте дроссель выполнен в виде дросселирующих отверстий). На представленной на чертеже конструкции развихритель выполнен в виде 4-х размещенных на соосной вихревой трубе окружности, плоских спиралей 7, примыкающих торцами к крышке 5 и установленных таким образом, что закручивание спирали от ее периферии к центру совпадает с направлением вращения газового потока, т.е. в данном случае по часовой стрелке. В крышке 5 выполнены четыре сквозных отверстия 8. Каждое отверстие 8 соосно соответствующей спирали 7.

Вихревая труба по настоящему изобретению работает следующим образом.

Поток компримированного газа (воздуха) подают в камеру энергетического разделения 2, сформированную корпусом 1 с крышкой 5, через сопловой ввод 3. Сопловой ввод 3 в свою очередь формирует закрученный вихревой поток, движущийся в пристенной области камеры энергетического разделения 2. Параллельно в камере энергетического разделения 2 образуется приосевой поток, вращающийся в том же направлении, что и пристенный, но движущийся в направлении диафрагмы 4. Благодаря энергетическим процессам, проходящим в камере энергетического разделения и до сего дня не получившим точного математического описания, пристенный поток приобретает повышенную, а приосевой - пониженную температуру. Дроссельные отверстия 6 при соответствующем оснащении внешними устройствами, например вентилем на общем горячем потоке, позволяют регулировать разделение как в отношении массы холодного и горячего потоков, так и в отношении их температуры. Приосевой поток покидает вихревую трубу через диафрагму 4.

Особенность работы вихревой трубы по настоящему изобретению заключается в следующем.

В данном варианте закрученный по часовой стрелке в основном пристенный поток попадает в отдельные спирали 7 и приобретает в ней дополнительную скорость, благодаря уменьшению радиуса поворота. Торможения потока и, соответственно, потери энергии, о чем говорилось выше, не происходит. Спирали помогают при этом формированию приосевого потока, образуют, вероятно, не один, а несколько прецессирующих приосевых вихревых жгутов и способствуют появлению крупномасштабных вихревых структур - вторичных вихревых течений. Именно этим можно объяснить полученное нами повышение коэффициента полезного действия вихревой трубы.

Следует отметить, что размещение только одной спирали, соосной вихревой трубе, также приводит к увеличению эффективности ее работы, что может быть объяснено изложенным выше образом.

Ранее указывалось на положительное воздействие дополнительно вводимого потока. Если в известных вихревых трубах чаще всего необходима принудительная его подача, то в настоящем изобретении в зоне центра каждой спирали формируется пониженное давление. При этом дополнительный поток поступает в камеру энергетического разделения 2 через сквозные отверстия 8.

При экспериментальном исследовании вихревой трубы, конструкция которой соответствует настоящему изобретению, определен коэффициент полезного действия в среднем на 20% более высокий, чем у аналогичной трубы с развихрителем в виде крестовины.

Таким образом, можно утверждать, что полученный положительный эффект обязан тем изменениям конструкции вихревой трубы, которые и заявлены в настоящем изобретении.

1. Вихревая труба, содержащая корпус с камерой энергетического разделения, на стороне вывода горячего потока которой размещены развихритель, дроссельное устройство и крышка, а на стороне вывода холодного потока - диафрагма и сопловой ввод разделяемого газа, отличающаяся тем, что развихритель выполнен в виде одной, размещенной по центру, и/или нескольких, размещенных на соосных вихревой трубе окружностях, плоских спиралей, примыкающих торцами к крышке и установленных таким образом, что закручивание спирали от ее периферии к центру совпадает с направлением вращения газового потока.

2. Вихревая труба по п.1, отличающаяся тем, что крышка снабжена сквозными соосными каждой спирали развихрителя отверстиями.



 

Похожие патенты:

Изобретение относится к акустическим способам тепломассоэнергообмена жидких, газовых, газожидкостных смесей, взвесей и дисперсий. .

Изобретение относится к вихревым аппаратам и может применяться для получения холода и тепла и очистки газовых смесей от конденсирующихся примесей. .

Изобретение относится к теплофизике, газодинамике, энергетике и касается способа вихревого энергоразделения потока газа. .

Изобретение относится к теплофизике, газодинамике, энергетике и касается способа энергоразделения потока газа с помощью вихревой закрутки. .

Изобретение относится к области конструкции вихревых труб, предназначенных для получения холодных и/или горячих потоков газа. .

Изобретение относится к области устройства и работы вихревых труб, предназначенных для получения горячих или холодных потоков газа. .

Изобретение относится к средствам нагрева и охлаждения газов. .

Изобретение относится к теплотехнике и может быть использовано в теплонасосных и холодильных установках бытового и промышленного назначения. .

Изобретение относится к системам охлаждения воздуха с применением вихревых труб и может быть использовано в системах кондиционирования воздуха в производственных помещений и салонах транспортных средств, в холодильных установках, эксплуатируемых в производственных помещениях и в транспортных средствах, в системах охлаждения режущего инструмента и других устройствах, для функционирования которых необходимо или желательно охлаждение воздуха, а условия их эксплуатации некритичны к повышенным уровням шума

Изобретение относится к вентиляционным устройствам и может быть использовано для создания перемещающихся воздушных потоков с одновременным охлаждением в технических объектах и помещениях

Изобретение относится к вихревым установкам для газоразделения

Изобретение относится к вихревым трубам для получения охлажденного и подогретого потоков газа

Изобретение относится к холодильной технике

Изобретение относится к технологии подготовки и переработки попутного газа в товарную продукцию. Способ заключается в том, что попутный нефтяной газ после охлаждения в рекуперативном теплообменнике сепарируют в многоступенчатом центробежном сепараторе от нефтебензиновых жидких фракций, водного конденсата и механических примесей, которые выводят для дальнейшей переработки на газофракционирующую установку, а газообразную фракцию направляют на двухступенчатое компремирование. На первую ступень совместно с отсепарированной газообразной фракцией подают паровую фазу из наземного изотермического хранилища для повторного сжижения, а сжатый после первой ступени газ направляют на сжижение в трехпоточную вихревую трубу с образованием холодного, горячего газообразных и жидкого потоков. На вторую ступень компремирования направляют смесь горячего потока из вихревой трубы и холодного потока после рекуперативных теплообменников. Сжатый на второй ступени поток газа после рекуперативного охлаждения направляют в сепаратор, после чего газообразную фракцию направляют в магистральный газопровод или топливную сеть, а сжиженный газ совместно с отсепарированной из горячего потока вихревой трубы жидкой фазой в наземное изотермическое хранилище. Использование изобретения позволит повысить эффективность технологических процессов для выделения целевых углеводородных фракций. 1 ил.

Изобретение относится к технологии подготовки и переработки попутного газа в товарную продукцию. Попутный газ, после отделения от него конденсата (нефтяных и бензиновых фракций), представляющий легкие фракции газа, охлаждают в теплообменнике, подвергают сепарации в центробежном сепараторе, в результате которой выделенный конденсат вместе с конденсатом после первичной сепарации поступает на разделение ректификацией на нефть и бензин, а легкие фракции подвергают двухступенчатому компремированию. После первой ступени газ разделяют на два потока. Первый поток направляют в трехпоточную вихревую трубу для энергетического разделения с образованием холодного, горячего газообразных и жидкого потоков. Второй поток охлаждают в рекуперативном теплообменнике холодным потоком вихревой трубы и разделяют сепарацией на газ и жидкость. Газ поступает на вторую ступень компремирования, а жидкость, представляющая собой газовый бензин, затем поступает на дальнейшую переработку. Компремированный во второй ступени газ охлаждается в рекуперативном теплообменнике дросселируемой жидкой фазой, отсепарированной из горячего потока вихревой трубы, и поступает в расходный сепаратор для разделения на сухой и сжиженный газ, которые выводятся с установки в качестве товарных. Использование изобретения позволит повысить эффективность сепарации газовой смеси. 1 з.п. ф-лы, 1 ил.

Изобретение относится к технологии подготовки и переработки природного или попутного нефтяного газов в сжиженный газ, представляющий собой пропан-бутановую фракцию. Исходный поток охлаждают, сепарируют и выделяют легкую часть низкомолекулярного углеводородного сырья с последующим его сжижением с выделением жидкой пропан-бутановой фракции в вихревом энергетическом разделителе. Вихревой энергетический разделитель представляет собой трехсекционную емкость, в которой вертикально размещена вихревая труба таким образом, что разделена на три секции горизонтальными перегородками - верхнюю, среднюю и нижнюю. При этом в верхней секции размещен холодный конец с теплообменником-змеевиком вихревой трубы, в средней - горячий конец, а в нижней - регулирующее устройство расхода горячего потока и сепарационное устройство по отделению из горячего потока жидкой фазы, содержащее клапан. Изобретение направлено на повышение ресурсов чистого углеводородного сырья, используемого во многих отраслях промышленности, когда исходное сырье содержит много нежелательных примесей. 2 ил.
Наверх