Способ определения горизонтальных координат неподвижного подводного источника гидроакустических навигационных сигналов

Изобретение относится к средствам подводной навигации, в частности к определению местоположения или для точной координатной привязки точек постановки стационарных маяков гидроакустических навигационных систем, стартовых точек или точек зависания автономных подводных роботов и других подводных технических средств, оснащенных источниками навигационных сигналов. Способ определения горизонтальных координат неподвижного подводного источника гидроакустических навигационных сигналов заключается в том, что в окрестности места постановки источника гидроакустических навигационных сигналов буксируют гидроакустическую приемную антенну. Измеряют время распространения гидроакустических навигационных сигналов в точках нахождения приемной антенны. Фиксируют текущие координаты буксируемой антенны в момент приема навигационных сигналов. Полученную информацию записывают и по ней вычисляют координаты неподвижного подводного источника. При этом буксируемую гидроакустическую приемную антенну перемещают произвольными галсами, охватывающими с различных направлений окрестность места постановки неподвижного подводного источника гидроакустических навигационных сигналов. Зафиксированные координаты приемной антенны, полученные на произвольных галсах, формируют в группы, равноудаленные от неподвижного подводного источника навигационных сигналов в соответствии с измеренными временами распространения навигационных сигналов. Затем для каждой группы равноудаленных координатных отсчетов, если их число не менее трех, оценивают горизонтальные координаты источника Хk, Yk. Технический результат заявленного изобретения заключается в снижении погрешности определения горизонтальных координат неподвижного подводного источника гидроакустических навигационных сигналов в условиях неопределенной гидрологии и уменьшении времени выполнения координирования. 1 ил.

 

Изобретение относится к средствам подводной навигации, в частности к определению местоположения или для точной координатной привязки точек постановки стационарных маяков гидроакустических навигационных систем, стартовых точек или точек зависания автономных подводных роботов и других подводных технических средств, оснащенных источниками гидроакустических навигационных сигналов.

Общеизвестен способ определения координат мест установки стационарных донных гидроакустических маяков, оснащенных источником гидроакустических навигационных сигналов, в котором определение координат выполняется с борта обеспечивающего судна с использованием судовой гидроакустической антенны для приема этих гидроакустических навигационных сигналов. В известном способе синхронно измеряются текущие координаты судовой антенны, буксируемой движущимся судном, и наклонные дальности между источником и приемной антенной. Для реализации способа судно выполняет специальные прямолинейные галсы вблизи точки постановки маяка и рассчитывают координаты маяка по алгоритмам, связывающим измеренные дальности и координаты буксируемой антенны [1].

Недостатками такого способа являются необходимость выполнения жестко заданных галсов судна и необходимость точного измерения наклонной дистанции. Последнее включает необходимость точного измерения времени распространения гидроакустического навигационного сигнала и необходимость точного определения эффективной скорости распространения сигнала в районе работ, причем значение эффективной скорости в существенной степени определяется вертикальным распределением скорости звука (ВРСЗ) в районе работ и является различным для разных значений наклонной дальности, что существенно усложняет и увеличивает продолжительность выполнения работы из-за необходимости измерения гидрологических характеристик района и глубины установки маяков.

Известен способ определения координат донных навигационных объектов, основанный на измерении наклонной дальности источника от буксируемой приемной судовой антенны и текущих координат буксируемой судовой антенны обеспечивающего судна [2], в котором для уменьшения времени координатной привязки маяков процедура определения наклонной дальности упрощена за счет предварительного расчета эффективной скорости звука путем ее аппроксимации от времени распространения сигнала для заданных глубин установки судовой антенны и источника гидроакустических навигационных сигналов. Эффективная скорость аппроксимируется полиномом второй степени времени распространения навигационного сигнала

ce=a0+a1t+a2t2.

Коэффициенты полинома а0, a1, а2 определяются существующими гидрологическими и геометрическими условиями работы. Это позволяет получать относительно точные значения наклонной дальности

D=cet

в широком диапазоне изменений времени распространения, при принятых гидрологических и геометрических условиях работы. Для известного способа при выполнении произвольных галсов судна в районе постановки маяков координаты объекта рассчитываются на основе обработки информации, которая включает текущие координаты судовой антенны по данным судовой спутниковой навигационной системы и точное время распространения навигационного сигнала. Эффективная скорость распространения гидроакустического навигационного сигнала предварительно устанавливается как функция гидрологических характеристик района работ.

Известный способ по своему функциональному назначению, по своей технической сущности и достигаемому техническому результату наиболее близок к заявляемому способу и принят за прототип.

Недостатками такого способа являются длительное время координирования за счет необходимости измерения гидрологии и необходимость определения эффективной скорости, а также недостаточная точность координирования за счет погрешности определения эффективной скорости и систематических погрешностей измерения времени распространения.

В основу изобретения поставлена задача - снижение погрешности определения горизонтальных координат неподвижного подводного источника гидроакустических навигационных сигналов в условиях неопределенной гидрологии и уменьшение времени выполнения координирования.

Поставленная задача решается тем, что в способе определения горизонтальных координат неподвижного подводного источника гидроакустических навигационных сигналов, при котором в окрестности места постановки названного источника гидроакустических навигационных сигналов буксируют, посредством обеспечивающего судна, гидроакустическую приемную антенну, измеряют время распространения гидроакустических навигационных сигналов в точках нахождения приемной антенны, фиксируют текущие координаты буксируемой антенны в момент приема навигационных сигналов, полученную информацию записывают и по ней вычисляют координаты неподвижного подводного источника, буксируемую гидроакустическую приемную антенну посредством обеспечивающего судна перемещают произвольными галсами, охватывающими с различных направлений окрестность места постановки неподвижного подводного источника гидроакустических навигационных сигналов, зафиксированные координаты приемной антенны, полученные на произвольных галсах, формируют в группы, равноудаленные от неподвижного подводного источника гидроакустических навигационных сигналов в соответствии с измеренными временами распространения навигационных сигналов, затем для каждой группы равноудаленных координатных отсчетов, если их число не менее трех, оценивают горизонтальные координаты источника Xk, Yk по формулам

и вычисляют горизонтальные координаты Х, Y неподвижного подводного источника гидроакустических навигационных сигналов после осреднения оценок по всем равноудаленным зонам:

где

{xi, yi} - группа координатных отсчетов буксируемой антенны, равноудаленных от источника, сформированная для времени распространения навигационного сигнала tk при установленной ширине временного окна Δt,

N - число координатных отсчетов, принятых при расчете в k-той зоне дальности;

i=1,…N;

- число зон дальности;

t={tmax, tmin} - временной интервал распространения гидроакустических навигационных сигналов, зафиксированный при перемещении приемной гидроакустической антенны.

В заявляемом техническом решении определение горизонтальных координат неподвижного подводного источника гидроакустических навигационных сигналов решается как задача определения геометрического центра окружности, радиус которой - горизонтальная дальность приемной антенны от источника. Горизонтальная дальность приемной антенны в общем случае является функцией глубин излучающей и приемной антенн, эффективной скорости и времени распространения навигационного сигнала. Для ряда установленных точек этой окружности положение центра находится методами статистической обработки, например методом наименьших квадратов по приведенным формулам. Расчетные значения координат объекта оказываются зависимыми только от координат приемной антенны, фиксированных в равноудаленных зонах, и независимыми от значений эффективной скорости, поскольку при равном времени распространения (что задается условиями расчета путем формирования равноудаленных зон) и заданных глубинах установки антенн источника и приемника скорость распространения сигналов в различных точках акватории (по различным горизонтальным направлениям) является одинаковой.

Для примера, предположим, что буксируемая приемная антенна движется по окружности, в центре которой установлен источник гидроакустических навигационных сигналов. Условием такого движения является равенство времени распространения навигационного сигнала, принимаемого в каждой точке траектории. Точное значение времени не имеет значения. Наличие систематической погрешности измерения времени не влияет на результат координирования. Для принятой модели расчета в этом случае погрешность определения координат неподвижного источника гидроакустических навигационных сигналов σМ определяется только погрешностью измерения координат буксируемой антенны σА и связана с ней зависимостью

N - число отсчетов координат, взятых для выбранного значения времени распространения. Если погрешность определения координат буксируемой антенны определяется погрешностью систем спутниковой навигации и составляет 5-10 м, то погрешность определения координат источника может быть меньше 1 м при числе наблюдений несколько сотен. Такой объем данных для координирования легко достигается при движении судна по акватории различными галсами и формированием нескольких десятков равноудаленных зон. Например, при периоде следования навигационных сигналов 10 с, за один час координирования накапливаются 360 координатных отсчетов, и этих данных достаточно для определения координат с ошибкой менее 1 м.

В заявленном способе определения горизонтальных координат неподвижного подводного источника гидроакустических навигационных сигналов общими существенными признаками для него и для его прототипа являются:

- в окрестности места постановки подводного источника гидроакустических сигналов буксируют посредством обеспечивающего судна гидроакустическую приемную антенну;

- измеряют время распространения гидроакустических навигационных сигналов в точках нахождения приемной антенны;

- фиксируют текущие координаты буксируемой антенны в момент приема навигационных сигналов;

- записывают полученную информацию и по ней вычисляют координаты неподвижного подводного источника гидроакустических навигационных сигналов.

Сопоставительный анализ существенных признаков заявляемого технического решения и прототипа показывает, что первый в отличие от прототипа имеет следующие отличительные признаки:

- перемещают буксируемую гидроакустическую приемную антенну посредством обеспечивающего судна произвольными галсами, охватывающими с различных направлений окрестность места постановки неподвижного подводного источника гидроакустических навигационных сигналов;

- зафиксированные координаты приемной антенны, полученные на произвольных галсах, формируют в группы, равноудаленные от неподвижного подводного источника гидроакустических навигационных сигналов в соответствии с измеренными временами распространения навигационных сигналов;

- для каждой группы равноудаленных координатных отсчетов, если их число не менее трех, оценивают горизонтальные координаты источника Xk, Yk;

- вычисляют горизонтальные координаты X, Y неподвижного подводного источника гидроакустических навигационных сигналов после осреднения оценок по всем равноудаленным зонам.

Сопоставительный анализ заявляемого технического решения и прототипа показывает, что отсутствие необходимости измерения гидрологических характеристик района работ и определения вертикального распределения скорости звука в районе работ при выполнении координирования является существенным признаком, определяющим уменьшение затрат на определение координат и уменьшающих погрешность координирования, поскольку итоговая погрешность зависит только от погрешности координатных отсчетов судовой антенны и уменьшается с увеличением числа наблюдений или соответственно увеличением числа обрабатываемых кольцевых равноудаленных зон.

Таким образом, в заявленном способе уменьшается число измеряемых параметров, для координатных отсчетов, формирующих равноудаленные зоны от источника сигнала, вычисляются координаты источника по формулам, содержащим в качестве исходных данных только координатные данные судовой приемной антенны.

Сущность изобретения поясняется чертежом, на котором показана схема координирования.

На основании изложенного можно заключить, что совокупность существенных признаков заявленного изобретения имеет причинно-следственную связь с достигнутым техническим результатом, т.е. благодаря данной совокупности существенных признаков изобретения стало возможным решить поставленную задачу.

Следовательно, заявляемое изобретение является новым, обладает изобретательским уровнем, т.е. оно явным образом не следует из известных технических решений и пригодно для использования.

Сущность заявленного изобретения поясняется чертежом, на котором показана схема координирования. На чертеже приняты следующие обозначения:

tk - равноудаленные зоны;

i, yi} - координатные отсчеты;

i=1,…N, N - число координатных отсчетов, принятых при расчете в k-той зоне дальности.

Заявляемый способ определения горизонтальных координат неподвижного подводного источника гидроакустических навигационных сигналов осуществляется следующим образом.

Судно с буксируемой судовой антенной, положение которой точно определяется надводными навигационными средствами, например DGPS, совершает произвольные маневры в окрестности точки установки маяка, измеряя время распространения гидроакустического навигационного сигнала, излучаемого объектом координирования при различном удалении от источника. Далее выбираются совокупности координатных отсчетов, которые зафиксированы при одном и том же времени распространения сигнала в различных точках акватории и находятся по приведенным формулам координаты геометрической точки, которая с наименьшей ошибкой соответствует условию равноудаленности этой точки от выбранных координатных отсчетов.

Таким образом, в сравнении с прототипом, заявленный способ позволяет уменьшить время выполнения координирования и снизить ошибку координирования за счет отсутствия зависимости определяемых координат от значения скорости распространения гидроакустического навигационного сигнала.

Способ определения координат неподвижного подводного источника гидроакустических навигационных сигналов, предложенный в настоящем изобретении, применяется в Институте проблем морских технологий в составе гидроакустических навигационных систем автономных необитаемых подводных аппаратов.

Используемая литература

1. Касаткин Б.А., Косарев Г.В. «Использование траверзного метода для определения абсолютных координат маяков-ответчиков». - Морские технологии, вып.2, Владивосток: Дальнаука, 1998 г., с.65-69.

2. А.Е.Волков, А.И.Галошин, А.А.Густов «Руководство по использованию гидроакустических навигационных систем для определения места судна и подводных технических средств при выполнении морских геологоразведочных работ». - Мин. Природных ресурсов, Санкт-Петербург: Севморгео, 1998 г., 33-37 с. - прототип.

Способ определения горизонтальных координат неподвижного подводного источника гидроакустических навигационных сигналов, при котором в окрестности места постановки названного источника гидроакустических навигационных сигналов буксируют посредством обеспечивающего судна гидроакустическую приемную антенну, измеряют время распространения гидроакустических навигационных сигналов в точках нахождения приемной антенны, фиксируют текущие координаты буксируемой антенны в момент приема навигационных сигналов, полученную информацию записывают и по ней вычисляют координаты неподвижного подводного источника, отличающийся тем, что буксируемую гидроакустическую приемную антенну посредством обеспечивающего судна перемещают произвольными галсами, охватывающими с различных направлений окрестность места постановки неподвижного подводного источника гидроакустических навигационных сигналов, зафиксированные координаты приемной антенны, полученные на произвольных галсах, формируют в группы, равноудаленные от неподвижного подводного источника навигационных сигналов в соответствии с измеренными временами распространения навигационных сигналов, затем для каждой группы равноудаленных координатных отсчетов, если их число не менее трех, оценивают горизонтальные координаты источника Хk, Yk по формулам

и вычисляют горизонтальные координаты X, Y неподвижного подводного источника навигационных сигналов после осреднения оценок по всем равноудаленным зонам:
, ,
где ; ;
;


{xi, уi} - группа координатных отсчетов буксируемой антенны, равноудаленных от источника, сформированная для времени распространения навигационного сигнала tk при установленной ширине временного окна Δt;
N - число координатных отсчетов принятых при расчете в k-той зоне дальности;
i=1,…N,
- число зон дальности;
t={tmax, tmin} - временной интервал распространения навигационных сигналов, зафиксированный при перемещении приемной гидроакустической антенны.



 

Похожие патенты:

Изобретение относится к гидроакустической технике, в том числе к активным гидролокаторам, предназначенным для обнаружения целей, измерения координат и параметров движения обнаруженных целей.

Изобретение относится к области гидролокации и предназначено для определения положения наблюдаемого объекта по глубине в водной среде. .

Изобретение относится к области гидроакустики и может быть использовано на судах с большой осадкой и водоизмещением (СБОВ): супертанкера и др., а также на пассажирских судах: лайнерах и др., на обитаемых подводных аппаратах (ОПА): туристические подводные лодки и др.

Изобретение относится к гидрографии, в частности к способам и техническим средствам съемки рельефа дна путем определения глубин на заданной акватории с определением их геодезических координат.

Изобретение относится к области гидроакустики, а именно гидролокации, и может быть использовано при обнаружении объектов в активном режиме. .

Изобретение относится к области гидроакустики, связанной с приемом широкополосных сигналов, и может быть использовано при шумопеленговании, гидролокации, обнаружении гидроакустических сигналов, классификации, для гидроакустической связи, для подводных геофизических работ.

Изобретение относится к средствам подводной навигации и может быть использовано в составе ультракороткобазисных гидроакустических навигационных систем повышенной точности для обеспечения работы автономных и привязных необитаемых подводных аппаратов или других подводных технических средств.

Изобретение относится к гидроакустическим измерительным системам и предназначено для классификации донных отложений, а также для обнаружения и классификации донных и придонных объектов по акустическому импедансу.

Изобретение относится к гидроакустическим навигационным средствам, а именно - к гидроакустическим системам навигации (ГСН) подводных аппаратов (ПА) относительно судна обеспечения.

Изобретение относится к области радиолокации, лазерной локации и оптики, в частности к обнаружению, определению параметров движения и сопровождению сверхзвукового малозаметного низколетящего над водной поверхностью объекта (СМНО)

Изобретение относится к гидроакустике, в частности к гидроакустическим навигационным системам, работающим при наличии отражающих границ раздела, а более конкретно к определению координат преимущественно подводных подвижных аппаратов

Изобретение относится к радиотехнике, преимущественно к радиолокации объектов, и, в частности, может быть использовано для подповерхностного зондирования внутренних органов человека и животных в процессе ультразвуковых исследований

Изобретение относится к области подводной навигации, а именно к определению координат подводного объекта

Изобретение относится к области гидролокации и предназначено для обнаружения подводных целей в прибрежных мелководных областях

Изобретение относится к водолазной технике, а именно к аппаратуре звукоподводной связи и пеленгования, используемой водолазами. Пеленгатор водолаза, совмещенный со станцией звукоподводной связи, состоит из генератора импульсов и двух идентичных приемных каналов импульсов, каждый из которых имеет свою антенну, установленную слева или справа от водолаза. Выходы приемных каналов пеленгатора соединены с коммутатором, который подключает к станции звукоподводной связи левый или правый телефоны водолаза в зависимости от того на какую антенну раньше приходит сигнал от генератора импульсов другого водолаза. Обеспечивается одновременно с гидроакустической связью пеленгование гидроакустических сигналов другого водолаза. 1 з.п. ф-лы, 1 ил.

Система демодуляции сигнала относится к области демодуляции модулированного по фазе или по частоте сигнала и может использоваться для обнаружения движения объекта. Достигаемый технический результат - распознавание точной частоты конкретной составляющей сигнала в принятом сигнале с множественными составляющими. Система демодуляции сигнала содержит: комплексный демодулятор (110), имеющий первый вход (111) для приема модулированного по фазе входного сигнала (Si) и сконструированный для выполнения комплексного перемножения этого сигнала с аппроксимацией обратной величины фазовой модуляции; устройство (130) анализа спектра, принимающее демодулированный умноженный сигнал, произведенный комплексным демодулятором (110), и способное анализировать частотный спектр демодулированного умноженного сигнала, контроллер (140) модуляции. 3 н. и 12 з.п. ф-лы, 14 ил.

Изобретение предназначено для использования в системах управления движением судов (СУДС) при осуществлении оператором управления проводкой судна по сложным фарватерам. Техническим результатом, обеспечиваемым изобретением, является повышение точности и оперативности определения параметров движения судов при прохождении опасных участков акватории, в том числе определения положения судна относительно границ фарватера (границ зон безопасности). В изобретении решение задачи оперативного получения оператором СУДС достоверной информации о положении судна на фарватере достигается введением в состав оборудования СУДС гидроакустических навигационных систем (ГАС), внешние устройства которых (приемно-передающие устройства) располагаются вблизи опасных участков фарватера, использованием информации от них для определения положения судна относительно оси фарватера, координат местоположения его геометрического центра, расстояний носа и кормы судна от границ фарватера (границ запретных зон) и динамики изменения этих параметров и представлении результатов расчетов в цифровом виде и в виде отображения на индикаторе оператору для использования при выработке решений по управлению движением проводимого судна. 1 ил.

Изобретение относится к гидроакустике и предназначено для обнаружения объектов и измерения дистанции до них при взрывном источнике зондирующих сигналов. Изобретение позволяет определить дальность обнаружения и обеспечить скрытность приемного устройства. Гидроакустический способ измерения дистанции с помощью взрывного источника содержит излучение взрывного источника сигналов, прием эхосигнала от объекта, фильтрацию, детектирование и вывод на индикатор, взрывной источник имеет фиксированную глубину установки и фиксированное время срабатывания Тиз, прием сигналов взрывного источника осуществляется статическим веером характеристик направленности, измеряется уровень помехи по всем пространственным каналам, выбирается порог, принимается сигнал прямого распространения от источника взрывного сигнала до приемного устройства, определяется направление α0 прихода сигнала прямого распространения, определяется время прихода сигнала прямого распространения Тпр, определяется дистанция от приемника до источника излучения d=(Тпр-Тиз)С, где С - скорость звука, принимается эхосигнал, отраженный от объекта, определяется направление β0 прихода эхосигнала, отраженного от объекта, определяется время прихода Тэс эхосигнала, отраженного от объекта, определяется время распространения от источника до объекта и до приемника tc=(Тэс-Тиз), определяется дистанция распространения от источника до объекта и до приемника Rc=Ctc, определяется разность углов (α0-β0) между направлением на источник излучения и направлением на приемник эхосигнала, определяется дистанция до цели по формуле: Д = R c 2 − d 2 2 R c − 2 d cos ( α 0 − β 0 ) . 2 ил.

Изобретение относится к области гидроакустических навигационных систем и может быть использовано для мобильного навигационного обеспечения подводных роботов, в том числе работающих в ледовых условиях. Технический результат - расширение функциональных возможностей. Для этого в процессе навигации подводного робота используется один опорный гидроакустический маяк, координаты которого уточняют средствами спутниковых систем навигации и передают по гидроакустическому каналу на борт подводного робота, по ходу движения которого производят измерения скорости, курса и глубины, с использованием соответствующих датчиков принимают навигационные сигналы, излучаемые опорным гидроакустическим маяком, измеряют время распространения сигнала от маяка до подводного робота; на борту подводного робота инициализируют набор предполагаемых положений: точек, географические координаты которых равномерно разбросаны вокруг области погружения; изначально каждое положение считают равновероятным; количество предполагаемых положений выбирают исходя из вычислительных возможностей аппаратуры подводного робота и требуемого уровня точности определения местоположения; в момент приема подводным роботом навигационного сигнала от опорного маяка производят детерминированный сдвиг каждого предполагаемого положения. 1 ил.

Изобретение относится к средствам подводной навигации, в частности к определению местоположения или для точной координатной привязки точек постановки стационарных маяков гидроакустических навигационных систем, стартовых точек или точек зависания автономных подводных роботов и других подводных технических средств, оснащенных источниками навигационных сигналов

Наверх