Электронно-ионный источник

Изобретение относится к области получения электронных и ионных пучков и может быть использовано в ускорительной технике. Электронно-ионный источник содержит эмиттерный катод с эмиссионным отверстием и расположенный против него второй катод, анод, систему вытягивания и систему электропитания. Отличительной особенностью нового источника является то, что полый катод является биметаллическим и состоит из двух частей: внутренней ферромагнитной части и наружной высокотеплопроводящей части, выполненной по всей окружности катода в форме жестких ребер. Технический результат: интенсивный теплоотвод от биметаллического полого катода. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к области получения электронных и ионных пучков и может быть использовано в ускорительной технике.

Известен электронно-ионный источник с продольным извлечением частиц из отражательного разряда с холодными катодами, содержащий эмитерный катод с эмиссионным отверстием и расположенный против него второй катод, анод, систему вытягивания и систему электропитания (SU 456322 А1, 1973).

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного источника, относится то, что в известном источнике при длительном режиме работы и повышенной мощности электронного луча происходит значительный разогрев устья полого катода из-за недостаточного теплоотвода до температуры выше точки Кюри (Т=727°С), что приводит к ферропарамагнитному переходу последнего и изменению конфигурации магнитного поля в разрядной камере. Кроме того, при переходе температуры ферромагнитного материала через точку Кюри коэффициент распыления его резко возрастает. Все перечисленные факторы неблагоприятно сказываются на условиях горения разряда и как следствие эмиссионных характеристиках электронного источника.

Наиболее близким источником того же назначения к заявляемому изобретению по совокупности признаков является электронно-ионный источник, снабженный керамическими элементами с эмиссионными отверстиями в эмиттерном катоде и полом катоде, кроме того источник содержит также анод, систему вытягивания и систему электропитания (RU 2209483 С2 2001).

Данный источник принят за прототип. К причинам, препятствующим достижению указанного ниже технического результата при использовании известного источника, принятого за прототип, относится то, что в известном источнике при длительном режиме работы и повышенной мощности электронного луча увеличивается температура керамического элемента, расположенного в устье полого катода, приводящая к нагреву ферромагнитной части полого катода выше точки Кюри (Т=727°С). В результате ферропарамагнитного перехода материала полого катода происходит изменение конфигурации магнитного поля в разрядной камере, приводящее к ухудшению условий горения разряда и как следствие эмисионных характеристиках электронного источника.

Задачей изобретения является повышение стабильности работы источника во времени при сохранении постоянства эмиссионных характеристик электронно-ионного источника и геометрических характеристик пучка.

Технический результат при осуществлении заявляемого изобретения достигается за счет интенсивного теплоотвода от биметаллического полого катода, состоящего из внутренней ферромагнитной и наружной высокотеплопроводящей части.

Указанный технический результат при осуществлении изобретения достигается следующим образом: как и известный источник, заявляемый электронно-ионный источник содержит эмиттерный катод с эмиссионным отверстием и расположенный против него второй катод, анод, систему вытягивания и систему электропитания.

Отличительной особенностью нового источника является то, что полый катод является биметаллическим и состоит из двух частей: внутренней ферромагнитной и наружной высокотеплопроводящей части.

Кроме того, наружная высокотеплопроводящая часть полого катода выполнена из материала с высокой теплопроводностью, например меди, серебра, алюминия.

Кроме того, наружная высокотеплопроводящая часть полого катода выполнена в форме, например, радиатора охлаждения.

Указанная конструкция полого катода не позволяет увеличиваться температуре его устья выше точки Кюри, что сохраняет постоянство эмиссионных характеристик электронно-ионного источника.

На чертеже изображен заявляемый электронно-ионный источник.

Источник содержит холодный эмиттерный катод 1, полый катод с внутренней ферромагнитной частью 2, цилиндрический анод 3 и извлекающий электрод 4. Магнитное поле между катодами обеспечивается постоянным магнитом 5. К внутренней ферромагнитной части 2 полого катода присоединена наружная часть 6, выполненная из материала с высокой теплопроводностью, например меди, серебра, алюминия. При этом наружная высокотеплопроводящая часть полого катода выполнена по всей окружности катода в форме жестких ребер подобно радиатору охлаждения.

Источник работает следующим образом.

При подаче напряжения между катодами 1, 2 и анодом 3 зажигается отражательный разряд. С увеличением тока разряда, когда протяженность области катодного падения потенциала становится меньше радиуса апертуры полости в катоде 2, плазма проникает в полость и зажигается разряд с полым катодом. Интенсивное охлаждение полого катода за счет медной части повышает стабильность параметров электронно-ионного источника во времени.

1. Электронно-ионный источник с продольным извлечением частиц из отражательного разряда с холодными катодами, содержащий эмитерный катод с эмиссионным отверстием и расположенный против него второй полый катод, анод, систему вытягивания и систему электропитания, отличающийся тем, что полый катод выполнен биметаллическим и состоит из наружной высокотеплопроводящей части и внутренней ферромагнитной части.

2. Электронно-ионный источник по п.1, отличающийся тем, что наружная высокотеплопроводящая часть полого катода выполнена из материала с высокой теплопроводностью, например, меди, серебра, алюминия.

3. Электронно-ионный источник по п.1 или 2, отличающийся тем, что наружная высокотеплопроводящая часть полого катода выполнена в форме, например, радиатора охлаждения.



 

Похожие патенты:

Изобретение относится к плазменной технике, а именно к плазменным источникам, предназначенным для генерации интенсивных ионных пучков. .

Изобретение относится к источникам ионов, применяемым на ускорителях заряженных частиц. .

Изобретение относится к области приборостроения, в частности к технике создания источников ионов, предназначенных для ускорителей заряженных частиц. .

Изобретение относится к источникам ионов, применяемым на ускорителях заряженных частиц. .

Изобретение относится к источникам заряженных частиц и применяется в области ускорительной техники. .

Изобретение относится к получению электронных и ионных пучков и может быть использовано в ускорительной технике. .

Изобретение относится к технике получения ионных пучков, в частности пучков многозарядных, высокозарядных и поляризованных ионов. .

Изобретение относится к технологии электромагнитного разделения изотопов. .

Изобретение относится к источникам заряженных частиц и применяется в ускорительной технике. .

Изобретение относится к плазменной технике, а более конкретно - к плазменным источникам, предназначенным для генерации интенсивных ионных пучков, и к способам их работы.

Изобретение относится к технологии ионно-плазменной обработки поверхности изделий в источнике ионов с широким энергетическим спектром в скрещенных электрическом и магнитном полях, с отбором ионов с границы плазмы и ускорении их электрическим полем. Технический результат заключается в повышении энергетической эффективности. Обрабатываемое осесимметричное изделие в виде заземленного катода помещается в камеру, наполненную рабочим газом, в магнитное поле и с цилиндрическим анодом, находящимся под электрическим потенциалом в газовом разряде, с целью получения режимов очистки и травления, высоких антикоррозионных, трибологических и механических свойств осесимметричное изделие располагают соосно с осесимметричным составным анодом, с изменяемой геометрией в зависимости от формы и размеров обрабатываемой поверхности, в скрещенных осесимметричном радиально направленном электрическом и продольном магнитном полях, создают регулируемый радиально сходящийся ионный поток в интервале энергий от 0,5 до 5 кэВ и давлении рабочего газа от 10-2 до 100 Па, для этого располагают по торцам соосно изолированные электроды, находящиеся под авторегулирующимся электрическим потенциалом, формируют продольное аксиальносимметричное однородное магнитное поле и продольно перемещают обрабатываемое изделие с осевым поворотом (вращением). Устройство содержит магнитную систему и вакуумную камеру, внутри которой размещены катод и цилиндрический анод, катод расположен осесимметрично внутри анода, по торцам которого установлены соосно изолированные отражательные электроды, в качестве катода используется осесимметричное изделие, поверхность которого подвергается обработке. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к ускорителям заряженных частиц и может быть использовано в медицине и технологии. Технический результат - увеличение интенсивности в ускоренном пучке ионов на выходе ускоряющей ВЧ-структуры ускорителя, использующего лазерные источники ионов, в которых плазма образуется при облучении материала мишени оптическим излучением лазера. В высокочастотной ускоряющей структуре для пучков ионов, экстрагированных из лазерной плазмы, состоящей из ВЧ-резонатора с ускоряющим электрическим полем и трубками дрейфа, расстояние между центрами смежных зазоров которых изменяется по определенному закону, на входных и выходных торцах всех трубок дрейфа установлены металлические сетки, выполненные в виде аксиально-симметричных концентрических колец с радиальными перемычками, величина равновесной фазы ускоряющего электрического поля в центре ускоряющих зазоров соответствует максимальному значению напряженности данного поля. Между трубками дрейфа отсутствует поперечное электрическое поле и формируется только аксиально-симметричное продольное, ускоряющее ионы, электрическое поле, величина которого не зависит от расстояния до центральной продольной оси. 4 ил.

Изобретение относится к генераторам ионов, применяемым в плазменной технике и ускорителях заряженных частиц. Технический результат - повышение тока ионов с высоким зарядовым состоянием в пучке на выходе лазерно-плазменного генератора ионов с большим зарядом. Лазерно-плазменный генератор ионов с большим зарядом состоит из лазера, трубчатого пролетного канала, облучаемой лазером мишени, установленной внутри трубчатого пролетного канала со стороны одного из его концов, трубчатого металлического экрана, установленного коаксиально внутри трубчатого пролетного канала между мишенью и точками на стенках этого канала, в которых лазерная плазма при разлете начинает касаться его боковых стенок, и системы отбора ионов, установленной в противоположном месту установки мишени конце трубчатого пролетного канала. Мишень и металлический экран электрически соединены между собой и электрически изолированы от всех других электродов. Электроны из образующейся на мишени лазерной плазмы не могут уходить через материал мишени или окружающие электроды. Оставаясь в этой плазме, они повышают как вероятность ионизации вещества мишени, увеличивая зарядовое состояние плазменных ионов, так и препятствуют росту величины положительного электрического потенциала самой лазерной плазмы относительно окружающих ее электродов, что способствует уменьшению эмиссии ионов из данной плазмы. 1 ил.

Изобретение относится к области получения пучков ионов и может быть использовано для решения научных и прикладных задач, в частности использоваться в ускорителях или масс-спектрометрии и для обработки поверхностей различных изделий в вакууме. Технический результат - обеспечение получения потока ионов при давлении от 10-2 Торр и ниже, а также упрощение способа и конструкции устройства. В способе работы плазменного источника ионов в газоразрядную камеру предварительно вводят рабочий газ через газоввод, создают магнитное поле с вектором индукции преимущественно осевого направления относительно анода и катода, подают напряжение на анод и на полый катод, зажигают тлеющий разряд, образуют ионы за счет бомбардировки атомов рабочего газа электронами, достигается тем, что при зажигании тлеющего разряда устанавливают давление в газоразрядной камере ниже Р=10-2 Торр, создают разные концентрации частиц газа в различных областях межэлектродного пространства за счет организации сверхзвукового потока рабочего газа в заданной области межэлектродного зазора в поперечном к электрическому полю направлении при скорости потока газа более V=300 м/с. Устройство плазменного источника ионов содержит откачную вакуумную систему, подключенную к газоразрядной камере, с размещенными в ней газовводом для рабочего газа, полым катодом, анодом, и магнитную систему, предназначенную для создания в разрядной камере магнитного поля с вектором индукции осевого направления относительно анода и катода, дополнительно содержит конфузор, а газоввод выполнен как сверхзвуковое сопло, являющееся диффузором, причем конфузор и диффузор установлены в межэлектродном пространстве в газоразрядной камере соосно против друг друга таким образом, что ось конфузора и диффузора находится в поперечном к оси анода и катода направлении на заданном расстоянии относительно анода и катода. 2 н.п. ф-лы. 3 ил.

Изобретение относится к области ускорительной техники. Импульсный источник ионов гелия с холодными катодом и антикатодом состоит из соленоидальной катушки, надетой на немагнитную вакуумную камеру, внутри которой помещены катодный магнитный полюс с центральным углублением, катод из нержавеющей стали в виде плоского диска с центральным углублением в виде стакана, примыкающий к катодному магнитному полюсу, кольцевой анодный изолятор, анод в виде пустотелого цилиндра с кольцевой перемычкой в середине, выполненный из нержавеющей стали, антикатод в виде диска, выполненный из нержавеющей стали, по оси которого выполнено углубление с отверстием эмиссии в центре, своей выступающей частью вставленный в отверстие антикатодного магнитного полюса. На антикатоде выполнен кольцевой выступ, соосный с анодом и расположенный по направлению к аноду, диаметр выступа больше, чем диаметр стакана в катоде, но меньше, чем внутренний диаметр анода. Технический результат - стабилизации плотности разряда по оси отверстия ионной эмиссии. Устройство обеспечивает получение импульсного пучка ионов гелия при частоте импульсов 16-50 Гц, длительности импульсов синусоидальной формы по основанию импульса 100×10-6 с и амплитуде тока ионного пучка 80×10-3 А. 1 ил.

Изобретение относится к источникам газовых ионов, применяемых в ускорителях заряженных частиц. Дуоплазматронный источник газовых ионов состоит из соосно расположенных: катода, промежуточного электрода с отверстием и анода с отверстием эмиссии. Между анодом и промежуточным электродом размещен трубчатый металлический цилиндр, один торец которого закреплен на промежуточном электроде, а противоположный торец перекрыт диафрагмой с отверстием, площадь которого выбирают меньше площади внутренней поверхности трубчатого металлического цилиндра как отношение корня квадратного удвоенной массы электрона к корню квадратному массы иона рабочего газа. Технический результат - увеличение фазовой плотности тока инжектируемого ионного пучка. 1 ил.
Наверх