Способ сушки продуктов обогащения углей

Изобретение относится к области переработки угля, а именно к способу сушки мелких классов (<6 мм) продуктов обогащения коксующихся углей, и может быть использовано на модульных обогатительных фабриках. В данном способе сушке подвергают продукты обогащения коксующихся углей, которые предварительно обезвоживают до начальной остаточной влажности 13%. Для исключения процессов их деструкции температуру газового теплоносителя понижают до 250-350°С, а остаточную влажность доводят до 8%. Предварительное обезвоживание продуктов обогащения коксующихся углей производят в центрифуге или в фильтрующих камерах. Технический результат: сохранение качества продуктов обогащения коксующихся углей после их сушки, экономия энергоресурсов. 1 з.п. ф-лы.

 

Изобретение относится к области переработки угля, конкретно к способу сушки мелких классов (< 6 мм) продуктов обогащения коксующихся углей, и может быть использовано на модульных обогатительных фабриках.

Известно, что на углеобогатительных фабриках широко применяют процессы, осуществляющиеся в водных средах (обогащение в тяжелых суспензиях, в гидро- и винтовых сепараторах), в ходе которых наряду с отделением минеральных примесей в угле остается значительное количество балласта - воды. Поэтому заключительными операциями в процессах обогащения являются механическое и термическое обезвоживание продуктов обогащения угля, в первую очередь - угольных концентратов.

При этом основную трудность представляет сушка флотоконцентрата (0-0,5 мм) и мелкого концентрата (0,5-6 мм), сохраняющих после механического обезвоживания (на обезвоживающих грохотах, фильтрующих центрифугах, фильтрующих аппаратах) остаточную влажность 23-27% и порядка 13% соответственно [1], что обусловливает необходимость дополнительной тепловой сушки, от способа и аппаратурного оформления которой в существенной степени зависят качество угольного концентрата, расход топлива, энерго- и металлоемкость процесса.

В настоящее время на углеобогатительных фабриках чаще всего используют барабанные сушилки и трубы сушилки [1], что существенно удорожает процесс и делает вероятным неконтролируемый подсос воздуха. С учетом высоких температур газового теплоносителя (выше 700°С) это может приводить к ухудшению технологических характеристик высушиваемого материала (окисление) и не обеспечивает взрывобезопасность процесса сушки.

Известен способ термообработки мелких классов бурых углей [2] (размер частиц 5 мм) в последовательной системе из двух вихревых камер газовым теплоносителем с температурой 450-470°С с последующей изотермической выдержкой.

При обработке угля в вихревых камерах обеспечивается высокая интенсивность тепломассобмена за малое время пребывания материала в зоне обработки. Но при этом осуществляются не только сушка продуктов обогащения угля, но и определенные деструктивные превращения угольного вещества, сопровождающиеся реакциями дегидратации и декарбоксилирования.

Наиболее близким аналогом к заявленному изобретению по технической сущности и достигаемому результату является способ [3] сушки продуктов обогащения углей (флотоконцентратов), в котором осуществляют их термообработку в потоке газового теплоносителя в вихревой камере, работающей при избыточном давлении, заданной температуре теплоносителя 390-420°С, до заданной остаточной влажности 5-6%.

Недостатком данного способа является невозможность его применения для сушки продуктов обогащения коксующихся углей, т.к. не обеспечивается необходимое качество мелких классов продуктов обогащения коксующихся углей после их сушки, т.е. не позволяет избежать процессов, связанных с их деструкцией, а также данный способ не обеспечивает получение оптимальной влажности конечного продукта.

В основу изобретения положена задача разработать способ сушки продуктов обогащения коксующихся углей после механического обезвоживания в центрифуге или в фильтрующем аппарате, в котором, за счет осуществления сушки при более низкой температуре газового теплоносителя и более высокой остаточной влажности, сохраняется качество продуктов обогащения коксующихся углей.

Задача решается тем, что предлагается более эффективный способ сушки продуктов обогащения углей, включающий их термообработку в потоке газового теплоносителя в вихревой камере, работающей при избыточном давлении и температуре газового теплоносителя до остаточной влажности, в котором согласно изобретению сушке подвергают продукты обогащения коксующихся углей, которые предварительно обезвоживают до начальной остаточной влажности 13%, после чего заданную температуру газового теплоносителя понижают до 250-350°С, а остаточную влажность доводят до 8%.

В данном способе предварительное обезвоживание продуктов обогащения коксующихся углей производят в центрифуге или в фильтрующих камерах.

В заявленном способе, в отличие от известных, предварительное обезвоживание продуктов обогащения коксующихся углей и пятипроцентная разница остаточной влажности позволяют снизить температуру газового теплоносителя до 250-350°С, с уменьшением которой повышаются качественные характеристики конечного продукта по составу примесей и сохраняются его технологические характеристики.

Снижение температуры теплоносителя в данном случае с сохранением одноступенчатого процесса обусловлено тем, что в вихревой камере удаляется сравнительно небольшое количество влаги (около 5%), которая является поверхностной. Удаление влаги осуществляют как за счет термического так и за счет аэродинамического фактора, определяемого характером движения угольных частиц в закрученном скоростном потоке газового теплоносителя.

Выбор интервала сушки, равного 5%, и грансостава концентрата обеспечивает повышение производительности сушильного агрегата и более равномерную влажность конечного продукта.

В данном способе также сохраняется взрывобезопасность.

Осуществление способа можно продемонстрировать на следующих примерах.

Пример 1.

Обогащенный мелкий концентрат угля марки КО, имеющий ситовый состав, приведенный ниже, и начальную влажность 13%, подавали в вихревую камеру при соотношении газового теплоносителя к продуктам обогащения коксующихся углей 2,0 кг газового теплоносителя на 1 кг продуктов обогащения коксующихся углей и температуре газового теплоносителя на входе в вихревую камеру 250°С. Конечная влажность высушенного концентрата угля марки КО составила 7,8%.

Ситовый состав мелкого концентрата марки КО

Размер частиц, мм Содержание, %
> 6 3
6-4 61
4-2 24
< 2 12

Пример 2.

Обогащенный мелкий концентрат угля марки ОС, имеющий ситовый состав, приведенный ниже, и начальную влажность 13%, подавали в вихревую камеру при соотношении газового теплоносителя к продуктам обогащения коксующихся углей 2,3 кг газового теплоносителя на 1 кг продуктов обогащения коксующихся углей и температуре газового теплоносителя на входе в вихревую камеру 310°С. Конечная влажность высушенного концентрата угля марки ОС составила 8%.

Ситовый состав мелкого концентрата марки ОС

Размер частиц, мм Содержание, %
> 6 3,0
6-4 51,1
4-2 30,2
< 2 15,7

Пример 3.

Обогащенный мелкий концентрат угля марки КС, имеющий ситовый состав, приведенный ниже, и начальную влажность 13%, подавали в вихревую камеру при соотношении газового теплоносителя к продуктам обогащения коксующихся углей 2,5 кг газового теплоносителя на 1 кг продуктов обогащения коксующихся углей и температуре газового теплоносителя на входе в вихревую камеру 350°С. Конечная влажность высушенного концентрата угля марки КС составила 7,6%.

Ситовый состав мелкого концентрата марки КС

Размер частиц, мм Содержание, %
> 6 1,0
6-4 52,2
4-2 27,4
< 2 19,4

Использование изобретения позволит сохранить качество продуктов обогащения коксующихся углей после их сушки и одновременно сэкономить энергоресурсы.

Источники информации

1. Филиппов В.А. Технология сушки и термоаэроклассификации углей. - М.: Недра, 1987, с.287.

2. Кирсанов В.И. и др. Получение высококалорийного энергетического топлива - термоугля из бурых углей Канско-Ачинского бассейна. - Химия твердого топлива, №3, 1977, с.139-143.

3. Патент РФ №2112781, опубл. 10.06.98.

1. Способ сушки продуктов обогащения углей, включающий их термообработку в потоке газового теплоносителя в вихревой камере, работающей при избыточном давлении и температуре газового теплоносителя, до остаточной влажности, отличающийся тем, что сушке подвергают продукты обогащения коксующихся углей, которые предварительно обезвоживают до начальной остаточной влажности 13%, после чего температуру газового теплоносителя понижают до 250-350°С, а остаточную влажность доводят до 8%.

2. Способ по п.1, отличающийся тем, что предварительное обезвоживание продуктов обогащения коксующихся углей производят в центрифуге или в фильтрующих камерах.



 

Похожие патенты:
Изобретение относится к области переработки угля, конкретно к способу сушки продуктов обогащения углей, преимущественно каменных углей, и может быть использовано на обогатительных фабриках.

Изобретение относится к термохимической переработке углеродсодержащих материалов и предназначено для получения углеводородных продуктов, энергии и топлива из отходов и сырья органического происхождения. При вихревом быстром пиролизе мелкодисперсный материал подвергают термическому и механохимическому воздействию без доступа кислорода последовательно в два этапа. Сначала частицы вещества вовлекают в сильнозакрученный вихревой поток газовзвеси, созданный в пиролизном реакторе 3 при температуре 600-900°C. Время контакта составляет 0,1-3 с. Затем очищенный от твердых частиц газовый поток направляют в вихревой интенсификатор газов, где разгоняют в сопле Лаваля при температуре не ниже 500°C и далее закручивают с высокой скоростью вокруг катализатора. Управление процессом осуществляют изменением температуры, времени контакта и природы катализатора. Пиролизный реактор цилиндрической формы содержит камеру пиролиза (17) с рубашкой (16) в виде теплового контура. В начале камеры тангенциально расположены патрубок (18) подвода газовзвеси и патрубок (24) пусковой горелки. Вдоль камеры равномерно размещены, по меньшей мере, два тангенциально ориентированных отводных патрубка (20). Длина камеры пиролиза равна сумме трех своих диаметров, умноженной на количество отводных патрубков. Торцевые стенки (21) камеры пиролиза и осевые линии патрубков (18, 19, 20) параллельны и отклонены на угол 5-10 градусов. Ось реактора горизонтально ориентирована с возможностью изменения угла наклона. Вихревой интенсификатор газов выполнен в форме цилиндра, в верхней части которого тангенциально расположен входной патрубок, имеющий форму сопла Лаваля. В нижней части тангенциально размещен выпускной патрубок. В центральной части соосно установлен блок катализатора. Изобретение позволяет увеличить выход низших углеводородов в пиролизном газе до 50-80% (масс.), повысить теплоту сгорания газа до 33-56 МДж/м3, снизить содержание смолистых компонентов в жидком топливе, использовать его для генерации электроэнергии. 2 н.п. ф-лы, 3 ил.
Наверх