Способ получения термостойкого позитивного фоторезиста

Изобретение относится к способу получения термостойкого позитивного фоторезиста, который используется в качестве защитного покрытия и межслойной изоляции в многоуровневых электронных приборах и устройствах. Сущность способа получения позитивного термостойкого фоторезиста заключается в поликонденсации дихлорида изофталевой кислоты со смесью 3,3'-дигидрокси-4,4'-диаминодифенилметана и бис-(3-аминопропил)диметилсилоксана в амидном растворителе при соотношении аминных компонентов от 9:1 до 1:9 мол.%. Раствор светочувствительного компонента β,β-бис-нафтохинондиазидо-(1,2)-5-сульфоэфир-(4-гидроксифенил)пропана в амидном растворителе добавляют непосредственно в реакционную массу после завершения реакции поликонденсации. При этом для получения фоторезиста выбирают следующие соотношения компонентов, мас.%: реакционный раствор поли(о-гидроксиамида) - 80-90; β,β-бис-нафтохинондиазидо-(1,2)-5-сульфоэфир-(4-гидроксифенил)пропан - 1,5-6,5; амидный растворитель - остальное. Полученный термостойкий позитивный фоторезист надежно обеспечивает формирование высокоразрешенного, адгезионнопрочного, химически стойкого позитивного микрорельефа на смешанных, в том числе кремнийсодержащих, субстратах. 2 з.п. ф-лы.

 

Изобретение относится к способам получения термостойкого позитивного фоторезиста, который используется для защиты интегральных схем и межслойной изоляции.

Известен способ получения термостойкого позитивного фоторезиста, включающий конденсацию 2,4-диоксибензофенона с формальдегидом и далее с нафтохинондиазидо-(2)-5-сульфохлоридом и введение продукта конденсации в крезолформальдегидную смолу новолачного типа, содержащую кремнийорганический блок сополимер лапрола с полиалкилсилоксаном для обеспечения микрошероховатости пленки фоторезиста не более 10 нм. Для улучшения адгезии фоторезиста к поверхности подложки на последнюю наносят слой кремнийорганического соединения, например гексаметилдисилазана. Полученный фоторезист обладает термостойкостью при 160-200°С и высокой адгезией как к металлическим, так и кремнийсодержащим подложкам [SU №1825425, G03F 7/00, 1996]. Данный способ является наиболее близким по технической сущности и достигаемому результату.

Известный способ получения термостойкого позитивного фоторезиста обладает существенными и очевидными недостатками: низкая адгезия пленок, сформированных из термостойкого фоторезиста, к кремнийсодержащим субстратам, таким как диоксид и нитрид кремния, что значительно понижает надежность при формировании и дальнейшей эксплуатации высокотермостойкого фоторельефа, большая разница в коэффициентах термического расширения кремнийсодержащего субстрата и пленки. Такая разница приводит к растрескиванию пленки при проведении термогетероциклизации при повышенных температурах, что снижает выход годных структур (микросхем).

Технической задачей и положительным результатом заявляемого способа является повышение надежности при формировании высокоразрешенного термостойкого позитивного микрорельефа на смешанных субстратах, в том числе и кремнийсодержащих, с использованием заявляемого термостойкого позитивного фоторезиста, что позволяет применять его в качестве защитного покрытия и межслойной изоляции в многоуровневых микроэлектронных приборах и устройствах, требующих повышенной термостойкости.

Сущность способа получения термостойкого позитивного фоторезиста заключается в осуществлении поликонденсации дихлорида изофталевой кислоты и 3,3'-дигидрокси-4,4'-диаминодифенилметана в амидном растворителе с содержанием влаги 0.03-0.04 мас.%, использование 1.05-1.07 г-мол. дихлорангидрида изофталевой кислоты из расчета на 1 г-мол. аминных компонент, дополнительное введение в реакционный раствор по поликонденсации 0.05-0.07 г-мол. о-аминофенола, 2-х г-мол. эпихлоргидрина, по окончании реакции поликонденсации добавление в полимерный раствор β,β-бис-нафтохинондиазидо-(1,2)-5-сульфоэфир-(4-гидроксифенил)пропана, при этом в поликонденсацию с дихлоридом изофталевой кислоты вводят смесь 3,3'-дигидрокси-4,4'-диаминодифенилметана и бис-(3-аминопропил)диметил-силоксана.

В данном процессе соотношение 3,3'-дигидрокси-4,4'-диаминодифенилметана и бис-(3-аминопропил)диметилсилоксана выбирают в пределах от 9:1 до 1:9 мол.%.

Также в данном процессе β,β-бис-нафтохинондиазидо-(1,2)-5-сульфоэфир-(4-гидроксифенил)пропан вводят непосредственно в реакционный раствор после завершения поликонденсации, при этом для получения фоторезиста выбирают следующее соотношение указанных компонентов, мас.%:

- реакционный раствор поли(о-гидроксиамида) 80-90
- β,β-бис-нафтохинондиазидо
(1,2)-5-сульфоэфир-
(4-гидроксифенил) пропан 1.5-6.5
- амидный растворитель остальное

Одним из основных преимуществ способа является введение светочувствительного компонента непосредственно в реакционный раствор после завершения реакции поликонденсации.

Использование смеси 3,3'-дигидрокси-4,4'-диаминодифенилметана и бис-(3-аминопропил)диметил-силоксана при проведении реакции поликонденсации позволяет получать поли(о-гидроксиамид) с кремнийсодержащими фрагментами, что значительно расширяет области применения фоторезиста на его основе за счет расширения ассортимента субстратов для формирования микрорельефного изображения. Наряду с металлическими поверхностями и поликором его можно использовать и для кремнийсодержащих субстратов: диоксида и нитрида кремния, ситалла, различных марок стекла, кварца.

Выбрано оптимальное соотношение аминов, позволяющее получить поли(о-гидроксиамид), который обладает высокой адгезией как к металлам, так и к кремнийсодержащим субстратам, что делает его применимым для подложек с различными типами и плотностью металлических разводок.

В заявляемом способе получения термостойкого фоторезиста исключена операция по переосаждению сополимера из смеси органических растворителей, светочувствительный компонент вводится непосредственно в реакционный раствор после завершения поликонденсации. Кремнийсодержащий поли(о-гидроксиамид) хорошо совмещается с продуктами присоединения хлористого водорода к эпихлоргидрину и β,β-бис-нафтохинондиазидо-(1,2)-5-сульфоэфир-(4-гидроксифенил)пропаном, что позволяет сформировать из раствора светочувствительную пленку высокого качества. Сушку пленки осуществляют при 95±5°С в отсутствие света, толщина высушенной пленки составляет 1.5-2.0 мкм, экспонирование пленки проводят через контактную маску ртутной лампой ДРШ-250 при освещенности рабочей поверхности не менее 50000 Лк, время экспонирования составляет 15-20 с. Проявление проводят 0.3-0.6%-ным раствором едкого кали с добавлением хлористого калия. Минимальный размер вскрытых окон составляет 1.0 мкм с хорошим четким краем. Полученный микрорельеф подвергают ступенчатому задубливанию: 30 мин при 150°С, затем 30 мин при 350°С в атмосфере инертного газа, при этом толщина пленки уменьшается за счет циклодегидратации фрагментов ароматического поли(о-гидроксиамида) до поли(бензоксазола) с удалением воды при сохранении кремнийсодержащих фрагментов и удаления продуктов разложения светочувствительного компонента. Термозадубленный рельеф обладает термостойкостью 450°С с числом дефектов менее 1 на 1 см2.

Пример 1. Получение фоторезиста по предлагаемому способу.

а) Получение поли(о-гидроксиамида) из дихлорида изофталевой кислоты и 3,3'-дигидрокси-4,4'-диаминодифенилметана и бис-(3-аминопропил)диметил-силоксана. 0.6 г-мол. 3,3'-дигидрокси-4,4'-диаминодифенилметана и 0.4 г-мол. бис-(3-аминопропил)диметил-силоксана растворяют в 11.2 г-мол. диметилацетамида, содержащего не более 0.035% влаги при комнатной температуре. Смесь перемешивают при комнатной температуре 1 ч, после чего охлаждают до 0-(-5°С) и к охлажденному раствору при перемешивании в течение 5-7 мин добавляют 1.06 г-мол. тщательно измельченного дихлорида изофталевой кислоты с такой скоростью, чтобы температура реакционной массы не поднималась выше 40°С. По окончании добавления дихлорида изофталевой кислоты реакционную массу перемешивают 4 ч при комнатной температуре, затем к ней добавляют 0.06 г-мол. о-аминофенола, перемешивают 1 ч, после чего охлаждают до 0-(-5°С), по каплям в течение 30 мин добавляют 2 г-мол. свежеперегнанного эпихлоргидрина и перемешивают полимерный раствор при комнатной температуре 2 ч. Приведенная вязкость 0.5%-ного раствора кремнийсодержащего поли(о-гидроксиамида) при данном соотношении аминных компонентов (II) и (III) в концентрированной серной кислоте составляет 0.5 дл/г.

б) Получение фоторезиста.

К 425 в.ч. полученного реакционного полимерного раствора добавляют при перемешивании 18 в.ч. β,β-бис-нафтохинондиазидо-(1,2)-5-сульфоэфир-(4-гидроксифенил)пропана в 43 в.ч. диметилацетамида. Раствор перемешивают, предохраняя от света, при комнатной температуре 4 ч. Кинематическая вязкость полученного раствора составляет 121 сСт при 25°С. Перед использованием композицию фильтруют через 1 мкм фильтр (Millipor) и методом центрифугирования наносят на кремниевый субстрат. Нанесенную пленку подвергают сушке в горизонтальном положении при 95°С в течение 15 мин (толщина пленки 1.7-1.8 мкм), экспонированию ртутной лампой ДРШ-250 12-15 с, при освещенности рабочей поверхности не менее 50000 Лк, проявляют 0.6%-ным раствором едкого кали. Минимальный размер вскрытых окон составляет менее 1 мкм. Полученный рельеф подвергают ступенчатому задубливанию 30 мин при 150°С, затем 30 мин при 350°С. Толщина пленки после термозадубливания уменьшается до 1.5 мкм за счет удаления воды при циклодегидратации из ароматического о-гидроксиамидного фрагмента макромолекулы и продуктов разложения светочувствительного компонента. Термостойкость задубленного рельефа составляет 450°С в инертной атмосфере, число дефектов 0.3 на 1 см2. Пленка обладает высокой адгезией к кремнийсодержащему субстрату (подложке), ее коэффициент термического расширения (КТР) близок к КТР кремния, что препятствует растрескиванию пленки при термозадубливании и последующей эксплуатации при повышенных температурах. Термозадубленные пленки обладают высокой химической стойкостью к концентрированным кислотам и щелочам, воздействию различных типов плазмы повышенной мощности за исключением кислородной плазмы, выдерживают до 50 термоциклов (-70 - +150°С) без изменения физических параметров. Основные физические параметры термозадубленных пленок:

- удельное объемное сопротивление - 1015 Ом·см;

- диэлектрическая проницаемость - 3.5-4.5 при 106 Гц;

- тангенс угла диэлектрических потерь - 2·10-3-2·10-2;

- пробивное напряжение - не менее 400 В (для пленки 1.5 мкм).

Пример 2. Получение фоторезиста проводят аналогично примеру 1, но соотношение 3,3'-дигидрокси-4,4'-диаминодифенилметана и бис-(3-аминопропил)диметил-силоксана при получении кремнийсодержащего поли(о-гидроксиамида) составляет 10:1. Термостойкость и физические параметры термозадубленных пленок сохраняются, но адгезия к кремнийсодержащим подложкам понижается. При проявлении отслаивается до 20% пленки.

Пример 3. Получение фоторезиста проводят аналогично примеру 1, но соотношение 3,3'-дигидрокси-4,4'-диаминодифенилметана и бис-(3-аминопропил)диметил-силоксана при получении кремнийсодержащего поли(о-гидроксиамида) составляет 1:10. Термостойкость и физические параметры термозадубленных пленок сохраняются, однако вязкость получаемого лака значительно ниже, толщина пленок составляет менее 1 мкм, малое содержание фрагментов с гидроксильными группами не обеспечивает получение высокоразрешенного микрорельефа при проявлении.

Таким образом, высокотермостойкий позитивный фоторезист, получаемый по предлагаемому способу, надежно обеспечивает формирование высокоразрешенного позитивного микрорельефа на смешанных субстратах, в том числе кремнийсодержащих, и может быть использован в качестве защитного покрытия и межслойной изоляции в многоуровневых микроэлектронных приборах и устройствах.

1. Способ получения позитивного термостойкого фоторезиста, включающий поликонденсацию 1,05-1,07 г-мол. дихлорида изофталевой кислоты со смесью 3,3'-дигидрокси-4,4'-диаминодифенилметана и бис-(3-аминопропил)диметилсилоксана при их мольном соотношении от 9:1 до 1:9 в амидном растворителе с содержанием влаги не более 0,035 мас.%, с последующим введением в реакционный раствор 0,05-0,07 г-мол. о-аминофенола и 2 г-мол. эпихлоргидрина и добавлением в полученный при этом раствор кремнийсодержащего поли(о-гидроксиамида) β,β-бис-нафтохинондиазидо-(1,2)-5-сульфоэфир-(4-гидроксифенил)пропана в амидном растворителе.

2. Способ по п.1, отличающийся тем, что соотношение аминосодержащих соединений в фоторезисте выбирают: 0,6 г-мол. 3,3'-дигидрокси-4,4'-диаминодифенилметана и 0,4 г-мол. бис-(3-аминопропил)диметилсилоксана.

3. Способ по п.1, отличающийся тем, что кремнийсодержащий поли(о-гидроксиамид) и β,β-бис-нафтохинондиазидо-(1,2)-5-сульфоэфир-(4-гидроксифенил)пропан в амидном растворителе используют при следующем соотношении, мас.%:

кремнийсодержащий поли(о-гидроксиамид) 80-90
β,β-бис-нафтохинондиазидо-(1,2)-
5-сульфоэфир-(4-гидроксифенил)пропан 1,5-6,5
амидный растворитель остальное



 

Похожие патенты:

Изобретение относится к гравируемой лазером печатной матрице, используемой для получения рельефного изображения известными методами. .

Изобретение относится к чувствительным к излучению композициям, изменяющим показатель преломления, позволяющим получить новую модель распределения показателя преломления, в частности оптический материал, используемый в области оптоэлектроники и устройствах отображения информации.

Изобретение относится к фотополимеризующейся композиции пленочной паяльной маски для электронных печатных плат. .

Изобретение относится к двухслойным позитивным маскам, применяемым в микроэлектронике для создания приборов и интегральных схем методами субмикронных литографий, с использованием плазмохимического травления функциональных слоев, а также полиорганосиланам, обладающим фоточувствительными свойствами, для их изготовления общей формулы где R1 - этиладамантил, этил(диметиладамантил); R2 - метил, фенил; R3 - метил, фенил, циклогексил; m =2-3000 n = 2-3000; m : n = 16: (0,1-10).

Изобретение относится к фотолитографическим процессам по формированию на функциональной поверхности подложки с помощью фоторезистов рельефного покрытия заданной конфигурации для получения изображения рисунков при изготовлении интегральных схем в микроэлектронике, радиоэлектронике

Изобретение относится к взрывной фотолитографической технологии и может быть использовано, когда получение рабочего рисунка из активного материала (металла или полупроводника) методами избирательного химического или плазмохимического травления через фоторезистную маску затруднено или нецелесообразно в связи с повышенной химической стойкостью к травлению активного материала. Предложен способ взрывной литографии, включающий нанесение на подложку слоя полимерного фоторезиста и его сушку, избирательное облучение слоя фоторезиста, получение путем проявления и сушки резистной маски с изображением, обратным по отношению к рабочему рисунку, нанесение в высокотемпературных условиях на всю поверхность подложки и сформированной на ней резистной маски слоя активного материала с последующим удалением резистной маски с нанесенным на нее слоем активного материала, путем растворения полимерного фоторезиста, расположенного под слоем активного материала, причем растворение полимерного фоторезиста сопровождается его набуханием и образованием рабочего рисунка из оставшегося нанесенного на поверхность подложки слоя активного материала. Для обеспечения высокотемпературной формостойкости и термостойкости резистной маски в исходный полимерный фоторезист, изготовленный из фенолформальдегидной смолы и производного ортонафтохинондиазида, вводят добавку полигидроксилсодержащего соединения, выбранного из глицерина и полиэтиленгликоля с молекулярной массой от 380 до 650 единиц, в количестве 1-11% от массы производного ортонафтохинондиазида. Технический результат - повышение эффективности взрывной фотолитографии за счет повышения ее технологичности. 2 з.п. ф-лы, 10 табл., 2 пр.
Изобретение относится к способу получения материала для формирования матричной триады светофильтров, предназначенных для создания активно-матричных жидкокристаллических экранов

Изобретение относится к области микроэлектроники, фотовольтаики, к не литографическим технологиям структурирования кремниевых подложек, в частности к способам структурирования поверхности монокристаллического кремния с помощью лазера. Способ согласно изобретению включает обработку поверхности монокристаллического кремния ориентации (111) с помощью импульсного излучения лазера, сфокусированного перпендикулярно поверхности обработки с длительностью импульса 15 нс, при этом предварительно монокристаллический кремний ориентации (111) помещают в ультразвуковую ванну и обрабатывают в спирте в течение 30 минут, а обработку лазером ведут импульсами с длиной волны 266 нм и частотой 6 Гц, при этом число импульсов составляет 5500-7000 с плотностью энергии на обрабатываемой поверхности 0,3 Дж/см2. Изобретение обеспечивает формирование периодических пирамидальных структур на поверхности монокристаллического кремния, имеющих монокристаллическую структуру и три кристаллографические грани ориентации (111). 1 табл., 5 ил.
Изобретение относится к термостойкому фоторезисту, содержащему реакционный раствор поли(о-гидроксиамида) - продукта поликонденсации дихлорида изофталевой кислоты и 3,3'-дигидрокси-4,4'-диаминодифенилметана или смеси 3,3'-дигидрокси-4,4'-диаминодифенилметана и бис -(3-аминопропил)диметил-силоксана, взятых в соотношении от 9:1 до 1:9 мол. %, β,β-бис-нафтохинондиазидо - (1,2)-5-сульфоэфир -(4-гидроксифенил)пропан и амидный растворитель. При этом он в своем составе дополнительно содержит нигрозиновый черный краситель, и для получения термостойкого фоторезиста выбирают следующее соотношение указанных компонентов, мас.%: реакционный раствор поли(о-гидроксиамида) 80-90; β,β-бис-нафтохинондиазидо-(1,2)-5-сульфоэфир-(4-гидроксифенил)пропан 3.2-4.0; нигрозиновый черный краситель 0.6-1.4; амидный растворитель - остальное. Техническим результатом предлагаемого изобретения является создание термостойкого фоторезиста для получения непрозрачных высокотермостойких, адгезионно-прочных микрорельефных покрытий, не пропускающих световое излучение, что повышает надежность работы микросхемы и увеличивает срок службы прибора. 6 пр.
Наверх