Способ бессвинцовой контактно-реактивной пайки полупроводникового кристалла к корпусу

Изобретение относится к области изготовления полупроводниковых изделий и может быть использовано при сборке кремниевых кристаллов в корпусе полупроводниковых приборов путем бессвинцовой пайки. Сущность изобретения: способ бессвинцовой контактно-реактивной пайки полупроводникового кристалла к корпусу включает нанесение алюминия и олова на паяемые поверхности соответственно кристалла и корпуса, и размещение между кристаллом и корпусом фольги из цинка, и пайку к основанию корпуса. Новым в способе является то, что на основание корпуса наносят алюминиевую металлизацию, а пайку проводят в защитной среде при температуре 419-440°С. Техническим результатом изобретения является: исключение использования свинца при пайке, снижение себестоимости производства, упрощение технологии сборки, снижение трудоемкости изготовления, повышение температуры нагрева полупроводниковых изделий при эксплуатации. 2 ил.

 

Изобретение относится к области изготовления полупроводниковых изделий (ППИ) и может быть использовано при сборке кремниевых кристаллов в корпусе полупроводниковых приборов путем бессвинцовой пайки.

С 1 июля 2006 г. действует директива Европейского Союза RoHS (Restriction of Hazardous Substances), ограничивающая использование шести экологически опасных материалов, в том числе свинца, в новом электрическом и электронном оборудовании. Поэтому разработка бессвинцовых припоев и способов сборки полупроводниковых изделий методом пайки припоями без свинца в настоящее время является основной экологической проблемой микроэлектроники.

Существуют различные способы пайки кристаллов к основаниям корпусов ППИ.

Известен [1] способ пайки полупроводникового кристалла к корпусу, по которому на слой никеля, нанесенного на паяемую сторону кристалла, наносят электролитическое покрытие из сплава никель-олово, между кристаллом и никелированным корпусом размещают фольгу припоя ПСр2,5, а пайку проводят в среде водорода или в вакууме.

Основным недостатком данного способа является использование при пайке припоя, содержащего 92% Pb.

Известен [2] способ присоединения кристаллов кремниевых дискретных полупроводниковых приборов и интегральных схем к корпусу с образованием эвтектики кремний-золото, по которому между кристаллом и основанием корпуса размещают золотую фольгу. При этом фольгу перед пайкой отжигают в вакууме при температуре 160-250°С или в водороде при температуре 25°С и атмосферном давлении 101 кПа. Температура пайки составляет 420±20°С с предварительным подогревом корпусов до 100-120°С, время пайки 8 с, усилие на инструмент 0,1 Н для кристаллов размеров 4×4×0,46 мм3.

Недостатком данного способа является высокая себестоимость производимых ППИ в связи с использованием золотой фольги.

Известен способ [3] бессвинцовой пайки полупроводникового кристалла к корпусу, включающий нанесение цинка на паяемую поверхность кристалла с последующим нанесением на пленку цинка оловянно-висмутового покрытия с содержанием висмута 0,4-0,9%. Пайка кристалла осуществляется на основание корпуса, покрытое оловом.

Недостатком данного способа является нанесение цинка и Sn-Bi покрытия на паяемую поверхность кристалла, что усложняет технологию сборки ППИ за счет дополнительной защиты лицевой стороны кристаллов (в составе пластины).

В электронной промышленности при изготовлении ППИ применяется способ [4] монтажа БИС с использованием припоя на основе цинка, по которому на паяемую поверхность кристалла напыляют алюминий, а затем проводят пайку к корпусу, покрытому припоем цинк-алюминий-германий (ЦАГ).

К недостатку данного способа следует отнести высокую трудоемкость изготовления ППИ, заключающуюся в изготовлении сплава ЦАГ и нанесении его на монтажную площадку корпуса методом электрического взрыва фольги, что требует использования специального дорогостоящего оборудования. Кроме того, при пайке кристалла на сплав ЦАГ необходимо создавать наименьшее давление кристалла на расплав и осуществлять колебания кристалла в виде восьмерки для разрушения оксидной пленки, что также требует применения установки для пайки, не выпускающейся серийно в электронной промышленности.

Наиболее близким к заявляемому способу по технической сущности является способ [5] бессвинцовой контактно-реактивной пайки полупроводникового кристалла к корпусу, заключающийся в нанесении алюминия и олова на паяемые поверхности кристалла и корпуса соответственно и размещении между кристаллом и основанием корпуса фольги из цинка. При этом пайку проводят при температуре 382-419°С. Особенностью способа является то, что нагрев при данной температуре способствует образованию в паяном шве эвтектических соединений Sn-Zn со стороны корпуса (температура эвтектики 200°С) и Al-Zn со стороны кристалла (температура эвтектики 382°С).

Основным недостатком данного способа является сравнительно низкая температура нагрева ППИ при эксплуатации до 200°С, что недопустимо для приборов, работающих при более высоких температурах, например диодов Шоттки на основе карбида кремния.

Задача, на решение которой направлено заявляемое техническое решение - это исключение использования свинца при пайке, снижение себестоимости производства ППИ, упрощение технологии сборки, снижение трудоемкости изготовления ППИ, повышение температуры нагрева ППИ при эксплуатации.

Эта задача достигается тем, что в способе бессвинцовой контактно-реактивной пайки полупроводникового кристалла к корпусу, заключающемся в нанесении алюминия и олова на паяемые поверхности соответственно кристалла и корпуса и размещении между кристаллом и корпусом фольги из цинка и пайки к основанию корпуса, с целью исключения использования свинца при пайке, снижения себестоимости производства ППИ, упрощения технологии сборки, снижения трудоемкости изготовления ППИ, повышения температуры нагрева ППИ при эксплуатации, на основание корпуса наносят алюминиевую металлизацию, а пайку проводят в защитной среде при температуре 419-440°С.

Сущность изобретения поясняется чертежами, на которых схематично изображены:

на фиг.1 - схема сборки кристалла с корпусом перед пайкой;

на фиг.2 - схема паяного соединения кристалла с корпусом с помощью разработанного способа.

Способ бессвинцовой контактно-реактивной пайки полупроводникового кристалла к корпусу реализуется следующим образом.

На основание корпуса 1 (фиг.1) с покрытием 2 наносят гальваническим способом или напылением пленку алюминия 3. Затем на основании корпуса размещают фольгу 4 заданной толщины из цинка и полупроводниковый кристалл 6 с алюминиевой пленкой 5.

Пайка осуществляется в защитной среде (вакуум, водород или формир-газ) при температуре 419-440°С (температура плавления цинка составляет 419°С).

Нагрев при данной температуре (фиг.2) способствует образованию эвтектических соединений Al-Zn 7 (температура эвтектики 382°С) как со стороны кристалла, так и корпуса.

Нагрев при пайке в интервале температур 419-440°С способствует расплавлению цинка и лучшему смачиванию им паяемых алюминиевых пленок кристалла и корпуса. Нагрев при температуре выше 440°С может вызвать необратимые процессы в структуре кристалла.

После пайки зона паяного соединения полупроводникового кристалла с корпусом представляет собой структуру, состоящую из эвтектических соединений Al-Zn на границах с кристаллом и корпусом и чистого Zn в центре шва.

Данное паяное соединение повышает (до 382°С) температуру эксплуатации ППИ. Это особенно важно для приборов, работающих при высоких температурах, например диодов Шоттки на основе карбида кремния.

Таким образом, использование предлагаемого способа бессвинцовой контактно-реактивной пайки полупроводникового кристалла к корпусу обеспечивает по сравнению с существующими способами следующие преимущества:

1. Исключает использование свинца при пайке;

2. Снижает себестоимость производства ППИ;

3. Упрощает технологию сборки;

4. Снижает трудоемкость изготовления ППИ;

5. Повышает температуру нагрева ППИ при эксплуатации.

Источники информации

1. Патент RU 2167469 С2, H01L 21/58. Способ пайки полупроводникового кристалла к корпусу / Сегал Ю.Е. (RU), Зенин В.В. (RU), Фоменко Ю.Л. (RU), Спиридонов Б.А. (RU), Колбенков А.А. (RU). Опубл. 20.05.2001. Бюл. №14. 4 с.

2. Патент RU 2298252 С2, H01L 21/58. Способ присоединения кристаллов кремниевых дискретных полупроводниковых приборов и интегральных схем к корпусу с образованием эвтектики кремний-золото / Зенин В.В. (RU), Рягузов А.В. (RU), Спиридонов Б.А. (RU), Хишко О.В. (RU), Шарапова Т.И. (RU). Опубл. 27.04.2007. Бюл. №12. 4 с.

3. Патент RU 2278444 CI, H01L 21/52. Способ бессвинцовой пайки полупроводникового кристалла к корпусу / Зенин В.В. (RU), Рягузов А.В. (RU), Гальцев В.П. (RU), Фоменко Ю.Л. (RU), Бойко В.И. (RU), Хишко О.В. (RU). Опубл. 20.06.2006. Бюл. №17. 3 с.

4. Монтаж кристаллов БИС с использованием припоя на основе цинка / К.В.Маслова, С.О.Мохте, О.В.Панкратов и др. // Электронная промышленность.- 1989. - №6. - С.24-26.

5. Патент RU 2313156 CI, Н01L 21/52. Способ бессвинцовой контактно-реактивной пайки полупроводникового кристалла к корпусу / Зенин В.В., Бокарев Д.И. (RU), Рягузов А.В. (RU), Кастрюлев А.Н. (RU), Хишко О.В. (RU). Опубл. 20.12.2007. Бюл. №35. 4 с.

Способ бессвинцовой контактно-реактивной пайки полупроводникового кристалла к корпусу, включающий нанесение алюминия и олова на паяемые поверхности соответственно кристалла и корпуса, и размещение между кристаллом и корпусом фольги из цинка, и пайку к основанию корпуса, отличающийся тем, что на основание корпуса наносят алюминиевую металлизацию, а пайку проводят в защитной среде при температуре 419-440°С.



 

Похожие патенты:
Изобретение относится к области изготовления полупроводниковых приборов и может быть использовано при сборке кремниевых кристаллов в корпусе полупроводниковых приборов путем бессвинцовой пайки.
Изобретение относится к квантовой электронике, полупроводниковой и оптоэлектронной технологии, в частности технологии изготовления когерентных излучателей для систем накачки мощных твердотельных лазеров, создания медицинской аппаратуры, лазерного технологического оборудования и других целей.
Изобретение относится к области полупроводниковой микроэлектроники и предназначено для присоединения полупроводникового кристалла к корпусу методом контактно-реактивной пайки с образованием эвтектического сплава Au-Si при производстве транзисторов и интегральных микросхем.

Изобретение относится к области изготовления БИС и СБИС, имеющих большую площадь кристаллов, путем бесфлюсовой пайки в вакууме, водороде, аргоне, формир-газе и др. .

Изобретение относится к области изготовления полупроводниковых изделий (ППИ) и может быть использовано при сборке кремниевых кристаллов в корпусе полупроводниковых приборов путем бессвинцовой пайки.
Изобретение относится к области изготовления полупроводниковых изделий электронной техники и может быть использовано при сборке кремниевых кристаллов в корпусе полупроводниковых приборов путем пайки припоями, не содержащими свинец.
Изобретение относится к области изготовления мощных полупроводниковых приборов и БИС путем безфлюсовой пайки в вакууме, водороде, аргоне, формиргазе и др. .

Изобретение относится к изготовлению полупроводниковых приборов путем бесфлюсовой пайки на воздухе без применения защитных сред. .

Изобретение относится к технологии приборов силовой электроники на основе карбида кремния

Изобретение относится к области изготовления полупроводниковых изделий, имеющих большую площадь кристаллов

Изобретение относится к области производства изделий электроники и электротехники. Решается задача корпусирования электронных компонентов без применения опрессовки и дорогостоящей оснастки, что особенно важно при индивидуальном производстве единичных изделий электронной техники. Способ корпусирования электронных компонентов сочетает вакуумную заливку с приложением давления на компаунд, гарантирует высококачественное формообразование и повышение механических и теплотехнических характеристик изделий. Облегчен также контроль качества изделий путем применения прозрачного основания формы. Способ применим при производстве широкой гаммы изделий электроники и электротехники, а также изделий бытового назначения. 4 з.п. ф-лы, 5 ил.
Изобретение относится к термостойким адгезивам для соединения кристаллов и металлов с полиимидным основанием. Адгезивы (составы) содержат в качестве полимерного связующего новый преполимер - поли(о-гидроксиамид) - продукт реакции поликонденсации 3,3′-дигидрокси-4,4′-диаминодифенилметана и 1,3-бис-(аминопропил)-тетраметилдисилоксана с изофталоилхлоридом. При подготовке адгезива для применения осуществляют выдержку реакционного раствора, содержащего каталитические количества HCl, при 180-200°C течение 30-40 мин. Соединение кристалла или металла с полиимидным основанием осуществляют при 200-270°C в течение 30-40 мин. Сформированные из предлагаемых адгезивов пленки образуют высокотермостойкие гидрофобные клеевые слои, не содержащие пузырей, причем термическая обработка этих слоев осуществляется при температурах 200-270°C, что не вызывает окисления металлов в металлической разводке по кристаллу.

Изобретение относится к способу сушки покрытия из серебросодержащей пасты, используемой для получения неразъемного соединения при изготовлении силовых полупроводниковых приборов по технологии КНМ «кремний на молибдене». Данная технология позволяет получать соединения при низкой температуре с более высокими электрическими и термомеханическими свойствами, а также с увеличенным сроком службы по сравнению с действующими технологиями. Процесс сушки серебросодержащей пасты производится при разреженной атмосфере при давлении 5,5·103-4,0·104 Па и натекании воздуха потоком от 0,5 до 3 л/мин на 1 г серебросодержащей пасты при рабочей температуре 100-150°C в течение 10-60 минут. Снижение содержания восков в спеченном серебряном слое позволит создавать контактные соединения в силовых полупроводниковых приборах с более высокими эксплуатационным характеристиками: пониженное электросопротивление, снижение механических напряжений в соединении, увеличенная теплопроводность соединения. 3 з.п. ф-лы, 1 табл.

Изобретение относится к области полупроводниковой микроэлектроники и предназначено для присоединения полупроводникового кристалла к корпусу методом контактно-реактивной пайки с образованием эвтектического сплава Au-Si при производстве транзисторов и интегральных микросхем. Предложен способ монтажа кремниевых кристаллов полупроводниковых приборов на покрытую золотом поверхность корпуса с нанесенным на обратную сторону кристалла слоем. В качестве слоя наносят псевдосплавное покрытие толщиной (20-200) нм, содержащее аморфный кремний и 10-50 вес.% золота. Изобретение направлено на повышение теплофизических свойств многокристальных СВЧ транзисторов большой мощности. 3 ил., 2 табл.
Наверх