Пластмассовый сцинтиллятор с наноструктурированными люминофорами

Изобретение относится к области создания материалов для сцинтилляционной техники, а именно к пластмассовым сцинтилляторам (ПС), и может быть использован в ядерной физике, физике высоких энергий, в радиационной химии, в атомной промышленности, радиационной медицине. Полимерная основа сцинтиллятора содержит первичный и вторичный люминофоры, соединенные атомами кремния в наноразмерные разветвленные макромолекулы. Суммарное число звеньев первичного и вторичного люминофоров в макромолекуле от 3-х до 45-ти. Отношение числа звеньев первичного N люминофора к числу звеньев вторичного

где NL1 - число звеньев первичного люминофора в макромолекуле, a NL2 - число звеньев вторичного люминофора в макромолекуле. Расстояние между центрами любых двух соседних звеньев не более 1,2 нм. В качестве полимерной основы может быть использован любой полимер из группы винилароматических полимеров, при этом первичный люминофор выбирают из группы соединений, у которых максимум длинноволновой полосы спектра поглощения находится в интервале от 270 до 350 нм и квантовый выход флуоресценции не менее 5%, а вторичный люминофор выбран из группы соединений, у которых максимум длинноволновой полосы спектра поглощения находится в интервале от 330 до 400 нм и квантовый выход флуоресценции не менее 30%. Технический результат - получение ПС со световым выходом 100-110% относительно светового выхода антрацена, коэффициентом ослабления света на длине волны, соответствующей максимуму в спектре флуоресценции вторичного люминофора 0,0015-0,0025 см-1 и длительностью сцинтилляции 1-3 нс. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области создания материалов для сцинтилляционной техники, а именно к пластмассовым сцинтилляторам (ПС). Заявляемый ПС может быть использован в ядерной физике, физике высоких энергий, в радиационной химии, в атомной промышленности, радиационной медицине.

Известны, разработанные с целью повышения прозрачности, ПС на основе полиметилметакрилата содержащего вторичный растворитель (1,3-дифенилбензол до 40% массы), первичный люминофор 2,5-дифенилоксазол (РРО до 1% массы) и вторичный люминофор 1,4-бис(5-фенилоксазолил-2)бензол (РОРОР до 0,08% массы) [патент Российской Федерации N1722158, кл. G01T 1/203, опубл. 15.06.1994]. Световой выход относительно антрацена для этих сцинтилляторов менее 25%. Ослабление света на длине волны в максимуме спектра флуоресценции ПС 0,0025-0,004 см-1.

Известен ПС на основе полистирола, содержащий 2% по массе п-терфенила и 0,1% по массе 1,4-бис(5-фенилоксазолил-2)бензола (РОРОР) [авторское свидетельство СССР N172040, кл. G01T 1/203, опубл. 22.06.1965. Бюл. №12]. Этот сцинтиллятор имеет световой выход относительно антрацена 50% и обычно используется в качестве эталонного при сравнении характеристик ПС.

В рентгеновской и гамма-астрономии, при диагностике термоядерного синтеза, при определении времени жизни позитронов и в ряде других задач широко применяют быстродействующие пластмассовые сцинтилляторы с малым временем высвечивания. Известен быстродействующий пластмассовый сцинтиллятор на замещенной полистирольной основе со световым выходом относительно антрацена 57% [авторское свидетельство СССР N1690478, кл. G01T 1/203, опубл. 15.04.1993. Бюлл. №14].

Наибольший световой выход, среди известных ПС, имеют сцинтилляторы на замещенной полистирольной основе, содержащие в качестве первичного люминофора п-терфинил или РРО (1-2% массы), а в качестве вторичного люминофора 1,4-дистирилбензол или РОРОР (0,1-0,2%; массы). Их световой выход относительно антрацена достигает 60-65% [см. Sandier S.R, Loshaek S., Broderick E. - Nucleonics, 1960, v.18, N9, p.l02-103].

За прошедшие 50 лет не было предложено ни одного принципиального решения, которое позволило бы значительно увеличить световой выход ПС по сравнению с достигнутым в 60-ых годах XX века. Так у лучших, среди изготавливаемых в промышленных масштабах, пластмассовых сцинтилляторов ВС-416 и ВС-412 световой выход относительно антрацена 38-65%, а коэффициент ослабления света на длине волны 434 нм порядка 0,0025 см-1 [см. каталог фирмы Saint-Gobain Crystals].

Световой выход трехкомпонентного ПС (полимерная основа, первичный люминофор, вторичный люминофор) в первую очередь зависит от эффективности переноса энергии электронного возбуждения от полимерной матрицы к первичному и, далее, к вторичному люминофору. Из-за низкой концентрации вторичного люминофора перенос энергии к нему происходит за счет фотонного механизма, что приводит к увеличению длительности сцинтилляции и уменьшению светового выхода сцинтиллятора [см. Успехи физических наук, т.LXIX, вып.3, 1959, с.459-482]. Низкая концентрация вторичного люминофора в ПС позволяет уменьшить самопоглощение, благодаря чему можно получить больший «технический» световой выход. Попытка повысить эффективность переноса энергии за счет увеличения концентрации вторичного люминофора приведет к росту самопоглощения и, следовательно, к снижению светового выхода ПС, поэтому такое техническое решение применяется только в случае тонкопленочных (0,001-0,01 см) ПС, которые имеют весьма узкую область применения [патент Российской Федерации N2150128, кл. G01T 1/203, опубл. 27.05.2000].

Задача изобретения, - получение нового ПС с принципиально новым распределением первичного и вторичного люминофоров в полимерной матрице, благодаря чему достигается эффективность безызлучательного переноса энергии от первичного к вторичному люминофору близкая к 100%.

Технический результат, который может быть получен при осуществлении изобретения: 1) световой выход нового ПС относительно антрацена до 100-110%; 2) коэффициент ослабления света на длине волны, соответствующей максимуму в спектре флуоресценции вторичного люминофора 0,0015-0,0025 см-1. 3) длительность сцинтилляции 1-3 нс.

Поставленная задача решается тем, что создан новый ПС, состоящий из полимерной основы, которая, согласно изобретению, содержит первичный и вторичный люминофоры, соединенные атомами кремния в наноразмерные разветвленные макромолекулы. Суммарное число звеньев первичного и вторичного люминофоров в макромолекуле от 3-х до 45-ти. Отношение числа звеньев первичного люминофора к числу звеньев вторичного

где NL1 - число звеньев первичного люминофора в макромолекуле, а NL2 - число звеньев вторичного люминофора в макромолекуле. Расстояние между центрами любых двух соседних звеньев не более 1,2 нм.

В качестве полимерной основы может быть использован любой полимер из группы винилароматических полимеров, при этом первичный люминофор выбирают из группы соединений, у которых максимум длинноволновой полосы спектра поглощения находится в интервале от 270 до 350 нм и квантовый выход флуоресценции не менее 5%, а вторичный люминофор выбран из группы соединений, у которых максимум длинноволновой полосы спектра поглощения находится в интервале от 330 до 400 нм и квантовый выход флуоресценции не менее 30%.

Увеличение светового выхода сцинтиллятора и сокращение длительности сцинтилляции достигается благодаря тому, что в наноразмерной разветвленной макромолекуле с заявляемыми параметрами эффективность безызлучательного переноса энергии электронного возбуждения от звеньев первичного к звеньям вторичного люминофора может достигать 100%. В обычном трехкомпонентном сцинтилляторе (с равномерным распределением молекул первичного и вторичного люминофоров в объеме полимерной матрицы) эффективность безызлучательного переноса энергии не превышает 0,1% В обычном сцинтилляторе происходит излучательный перенос энергии электронного возбуждения от первичного к вторичному люминофору, эффективность которого не может быть больше квантового выхода первичного люминофора. Для основных первичных и вторичных люминофоров, применяемых при создании ПС, эффективность излучательного переноса не превышает 50-60%, при этом световой выход ПС относительно светового выхода антрацена 60-65%. Следовательно, увеличение эффективности безызлучательного переноса энергии до 100% приведет к возрастанию светового выхода ПС до 100-110% относительно антрацена.

Уменьшение коэффициента ослабления света на длине волны, соответствующей максимуму в спектре флуоресценции ПС (увеличение прозрачности) достигается выбором максимального соотношения между звеньями первичного и вторичного люминофоров Выбор максимального соотношения обусловлен необходимостью минимизации поглощения вторичного люминофора на длине волны, соответствующей максимуму его флуоресценции. Увеличение соотношения k приводит к возрастанию прозрачности и, одновременно, к уменьшению эффективности безызлучательного переноса энергии в результате увеличения расстояния между звеньями первичного и вторичного люминофоров. Во избежание этого люминофоры распределяются в макромолекуле таким образом, чтобы расстояния между центрами каждого звена одного вторичного люминофора и группой, состоящей из звеньев первичного люминофора, было минимальным, как это показано на чертеже.

На чертеже схематически представлено строение разветвленных наноразмерных макромолекул с разным соотношением числа звеньев первичного и вторичного люминофоров: Индексом (а) отмечены звенья первичного люминофора, а индексом (b) - звенья вторичного люминофора

Наноструктурированный наполнитель - наноразмерные разветвленные макромолекулы, состоящие из звеньев соответствующих первичному и вторичному люминофорам, получают с помощью по крайней мере одной из реакций металлоорганического синтеза (Судзуки, Кумады, Стилле, Ульмана), а также взаимодействием хлор- или алкоксисиланов с литий- или магнийорганическими производными. Примеры таких реакций описаны в:

1. Известия Академии Наук, Серия химическая, 2005, №.3, с.673;

2. Mendeleev Communications, 2007, v.17, №1, p.34-36;

3. Polymeric Materials: Science and Engineering, 2007, v.96, p.720-721.

Заготовку сцинтиллятора получают, смешивая наноструктурированный наполнитель с полимером, выбранным в качестве основы, в двухшнековом смесителе с возвратным каналом (при температуре 180°С и частоте вращения шнеков 600 об/мин). Далее прессованием (при температуре плит 180°С) получают образцы ПС диаметром 25 мм, высотой 10 мм. Поверхность образца тщательно полируют.

Измерение светового выхода ПС производят на калиброванном амплитудном спектрометре. Длительность сцинтилляции измеряют осциллографом с шириной полосы 1000 МГц. Величину коэффициента ослабления света на длине волны, соответствующей максимуму собственной флуоресценции, определяют с помощью спектрофотометра.

Изобретение иллюстрируется следующими примерами.

Пример 1. Используя в качестве первичного люминофора 2,2′-битиенил (λпогл=318 нм; λфлуор=378 нм; квантовый выход флуоресценции 6%), а в качестве вторичного люминофора (1,4-бис(2,2'-битиеннил-5-ил)бензол; λпогл=405 нм; λфлуор=455 нм; квантовый выход флуоресценции 55%) формируют макромолекулу, соответствующую структуре GI, показанной на чертеже. Соотношение между числом звеньев первичного и вторичного люминофоров: 12:1. Изготавливают образец ПС содержащий в качестве полимерной основы полистирол (98% массы) и наноструктурированный наполнитель (2% массы).

Измеренный световой выход образца ПС составляет 57%, относительно светового выхода антрацена. Длительность сцинтилляции 1,5 нс. Коэффициент ослабления света 0,0015 см-1.

Пример 2. Образец ПС получали аналогично примеру 1 с той разницей, что в качестве полимерной основы используют поливинилтолуол.

Измеренный световой выход образца ПС составляет 68%, относительно светового выхода антрацена. Длительность сцинтилляции 1,8 нс. Коэффициент ослабления света 0,0017 см-1.

Пример 3. Используя в качестве первичного люминофора 2,2'-битиенил (λпогл=318 нм; λфлуор=378 нм; квантовый выход флуоресценции 6%), а в качестве вторичного люминофора 9,10-дифенилантрацен (λпогл=375 нм; λфлуор=420 нм, квантовый выход флуоресценции 80%) формируют макромолекулу, соответствующую структуре GII, показанной на чертеже. Соотношение между числом звеньев первичного и вторичного люминофоров: 4:1. Изготавливают образец ПС содержащий в качестве полимерной основы полистирол (98% массы) и наноструктурированный наполнитель (2% массы).

Измеренный световой выход образца ПС составляет 85%, относительно светового выхода антрацена. Длительность сцинтилляции 2,5 нс. Коэффициент ослабления света 0,0016 см-1.

Пример 4. Образец ПС получали аналогично примеру 3 с той разницей, что в качестве полимерной основы используют поливинилтолуол.

Измеренный световой выход образца ПС составляет 98%, относительно светового выхода антрацена. Длительность сцинтилляции 2,7 нс. Коэффициент ослабления света 0,002 см-1.

Пример 5. Используя в качестве первичного люминофора 2,5-дифенилоксазол (РРО); (λпогл=304 нм; λфлуор=365 нм; квантовый выход флуоресценции 90%), а в качестве вторичного люминофора 1,4-бис(5-фенилоксазолил-2)бензол (РОРОР λпогл=360 нм; λфлуор=420 нм; квантовый выход флуоресценции 98%) формируют макромолекулу, соответствующую структуре GIII, показанной на чертеже. Соотношение между числом звеньев первичного и вторичного люминофоров: 6:3. Изготавливают образец ПС, содержащий в качестве полимерной основы полистирол (98% массы) и наноструктурированный наполнитель (2% массы).

Измеренный световой выход образца ПС составляет 105%, относительно светового выхода антрацена. Длительность сцинтилляции 2,0 нс. Коэффициент ослабления света 0,002 см-1.

Пример 6. Образец ПС получали аналогично примеру 5 с той разницей, что в качестве полимерной основы используют поливинилтолуол.

Измеренный световой выход образца ПС составляет 115% относительно светового выхода антрацена. Длительность сцинтилляции 2,5 нс. Коэффициент ослабления света 0,0022 см-1.

1. Пластмассовый сцинтиллятор, состоящий из полимерной основы, содержащей первичный и вторичный органические люминофоры, соединенные атомами кремния в наноразмерные разветвленные макромолекулы, состоящие из 3≤[NL1+NL2]≤45 звеньев при соотношении
где NL1 - число звеньев первичного люминофора в макромолекуле, a NL2 - число звеньев вторичного люминофора в макромолекуле, при этом расстояние между центрами любых двух соседних звеньев в макромолекуле не более 1,2 нм.

2. Сцинтиллятор по п.1, отличающийся тем, что в качестве полимерной основы использован винилароматический полимер, при этом первичный люминофор выбран из группы соединений, у которых максимум длинноволновой полосы спектра поглощения находится от 270 до 350 нм и квантовый выход флуоресценции не менее 5%, а вторичный люминофор выбран из группы соединений, у которых максимум длинноволновой полосы спектра поглощения находится от 330 до 400 нм и квантовый выход флуоресценции не менее 30%.



 

Похожие патенты:

Изобретение относится к области дозиметрии быстрых нейтронов и гамма-излучения. .

Изобретение относится к области создания материалов для сцинтилляционной техники, а именно к радиационно-стойким пластмассовым сцинтилляторам (ПМС). .

Изобретение относится к сцинтилляционным материалам на полимерных основах, в частности к пленочным пластмассовым сцинтилляторам (ППС) на основе ароматических полимеров, и может быть использовано в детекторах для регистрации: альфа-частиц в диапазоне энергий 2 - 10 МэВ (даже при высокой интенсивности фонового гамма-излучения); электронов в диапазоне энергий 200 - 1000 кэВ, низкоэнергетических гамма-квантов в диапазоне энергий 10 - 50 кэВ, а также при изготовлении других устройств, в которых применяется явление сцинтилляции (электро- и рентгено-люминесцентные экраны, электронно-оптические преобразователи и т.п.).

Изобретение относится к разработке материалов для измерения ионизирующих излучений и может быть использовано при изготовлении эластичных сцинтилляторов на основе полиорганосилоксановых каучуков, применяемых при детектировании и -излучений.

Изобретение относится к дозиметрии ионизирующих излучений, а именно к сцинтилляционной дозиметрии. .

Изобретение относится к области создания материалов для сцинтилляционной техники , конкретно к пластмассовым сцинтилляторам для регистрации тепловых нейтронов , и может быть использовано в экспериментальных приборах и установках в яДерной физике и дозиметрии ионизирующих излучений.

Изобретение относится к области создания пластмассовых сцинтилляторов с повышенным средним атомным номером
Наверх