Устройство для получения порошка тантала конденсаторного сорта

Изобретение относится к металлургической промышленности, в частности к устройству для получения порошка тантала конденсаторного сорта магнийтермическим восстановлением. Устройство содержит обогреваемый вращающийся трубчатый реактор с приводом вращения и испаритель магния. Реактор имеет на внутренней поверхности ребра. При этом испаритель и реактор выполнены в виде секций единого горизонтально расположенного блока, разделены между собой перегородкой с центральным отверстием и помещены в герметичную реторту. Причем реторта снабжена теплозащитными экранами, расположенными со стороны ввода привода вращения, и обогревается печью с зональным нагревом. Обеспечивается постоянное обновление и увеличение испаряющей поверхности магния и предотвращение образования на ней оксида, увеличение скорости испарения магния, более эффективное использование объема испарителя. 1 ил.

 

Изобретение относится к области порошковой металлургии, в частности является устройством для производства порошка тантала конденсаторного сорта.

При производстве первичных танталовых порошков конденсаторного сорта в промышленном масштабе используется способ восстановления тантала из фтортанталата калия металлическим натрием по реакции:

Восстановление проводят в среде расплава галогенидов щелочных металлов при перемешивании. Порошок тантала отделяют от солей, растворяя их в воде. Удельный заряд таких порошков достигает 80 тыс. мкКл/г.

В последнее время получил развитие способ получения порошков конденсаторного сорта путем восстановления тантала из пентаоксида тантала преимущественно парообразным магнием по реакции:

Преимущество магнийтермического способа по сравнению с натрийтермическим состоит в том, что как исходный пентаоксид, так и образующийся оксид магния являются тугоплавкими соединениями, процесс идет без образования жидкой фазы, что способствует образованию более мелкого порошка с большей удельной поверхностью, из которого возможно изготовление конденсаторов с удельным зарядом в диапазоне от 80 тыс. до 150 тыс. мкКл/г.

Описанный выше способ восстановления тантала из оксида металлическим магнием используют также для уменьшения содержания кислорода в конденсаторных порошках тантала, полученных другими способами, например способом натрийтермического восстановления из комплексных фтористых соединений, способом измельчения слитков электронно-лучевого переплава и пр. Как правило, раскислительному восстановлению магнием подвергают порошки после операции высокотемпературного отжига в вакууме, целью которой является придание порошкам требуемых реологических и потребительских свойств. Конденсаторные порошки, подвергнутые магнийтермическому раскислению, по сравнению с порошками, которые не были подвергнуты подобной обработке, обладают более выгодными электрическими характеристиками и механическим свойствами, например меньшим током утечки, лучшей прессуемостью и пр.

Процесс восстановления тантала из его пентаоксида парообразным магнием имеет следующие особенности:

- образование на поверхности неподвижной массы пентаоксида слоя продуктов реакции, затрудняющих доступ паров магния к пентаоксиду;

- необходимость поддержания одинаковой температуры во всей реакционной зоне для исключения локальной конденсации магния.

Эти особенности вызвали ряд затруднений при создании устройства для осуществления процесса магнийтермического восстановления, связанных с необходимостью обновления поверхности массы восстанавливаемого пентаоксида и поддержания малого значения градиента температуры в зоне реакции.

В патентной литературе описывается ряд устройств для осуществления магнийтермического способа получения конденсаторных танталовых порошков. Наиболее близким к предлагаемому изобретению является следующее устройство (United States Patent №6,171,363. Method for producing tantalum/niobium metal powders by the reduction of their oxides with gaseous magnesium / Leonid N. Shekhter et al. 2001, МПК B22F 9/22).

Устройство состоит из трубчатого вращающегося реактора, помещенного в печь. Реактор наклонен к горизонту, обычно на 1…3° для того, чтобы создать движение продукта по направлению от верхней части к нижней части реактора. Парогазовую смесь Ar-Mg вводят через торец нижней части. При этом магний расходуют на восстановление, избыточный аргон выпускают в атмосферу, восстановленный продукт собирают в сборник, присоединенный к нижней части реактора. Парогазовую смесь перед подачей в реактор готовят в выносном испарителе. Данное устройство принимаем за прототип.

Известное устройство имеет следующие существенные недостатки: 1 - наличие "холодных" торцов ректора. Они предназначены для неподвижных головок, несущих уплотнительные устройства, в которых вращается труба, присоединения питателя пентаоксида и сборника восстановленного продукта, патрубков выхода аргона и подвода парогазовой смеси - обязательных элементов устройства. На "холодных" концах неизбежна конденсация с образованием аэрозоля жидкого магния. Возможно также отложение твердого магния, накопление его в восстановленном продукте и забивание трубопроводов, предназначенных для подвода в реактор парогазовой смеси;

2 - объем слоя восстанавливаемого продукта по сравнению с объемом реактора мал (порядка 20%), перемешивание его неинтенсивно, наблюдаются моменты проскальзывания. Скорость движения парогазовой смеси близка к скорости ламинарного потока. Поэтому интенсивное поглощение магния пентаоксидом идет из слоя, непосредственно к нему прилегающего. Из остального объема магний используется менее интенсивно. Поэтому такое устройство требует расхода большого количества восстановителя;

3 - как правило, время пребывания продукта в таком устройстве при минимальном угле наклона (1°) и длине реактора ограничено скоростью вращения, углом наклона и длиной реактора;

4 - общеизвестно, что в устройствах такого типа равномерное поступательное движение полидисперсного материала отсутствует. Более крупные правильной формы частицы в начале движения как бы всплывают и движутся к нижней части реактора быстрее мелких и неправильной формы частиц. Это ведет к меньшей степени восстановления тантала в крупных и агломерированных частицах и невозможности провести процесс восстановления в одну стадию.

Задачей и техническим результатом предлагаемого изобретения является создание устройства для восстановления тантала из пентаоксида парообразным магнием, позволяющее более эффективно использовать объем испарителя и реактора и увеличить скорость протекания процесса восстановления за счет перемешивания магния и пентаоксида и увеличения испаряющей поверхности магния и поглощающей поверхности пентаоксида.

Сущность предлагаемого изобретения в том, что в отличие от известного устройства, содержащего обогреваемый трубчатый реактор и выносной испаритель, предлагаемое устройство содержит испаритель и реактор, которые выполнены в виде секций единого горизонтально расположенного блока, разделены между собой перегородкой с центральным отверстием и помещены в герметичную реторту, снабженную теплозащитными экранами, расположенными со стороны ввода привода, и обогреваемую печью с зональным нагревом, а реактор снабжен расположенными на его внутренней поверхности ребрами.

В оптимальном исполнении устройства испаритель и реактор изготовлены из металлического тантала и помещены в герметичную реторту (емкость). Реторта служит для создания внутри нее газовой среды с контролируемым впуском и выходом газа. Создаваемая инертная газовая среда используется для защиты как продукта, так и блока испарителя-реактора, изготовленных из тантала, от окислительного воздействия атмосферного воздуха при температуре ведения процесса. В качестве инертного газа, как правило, используется аргон.

Реторта помещается в печь с зональным нагревом, что позволяет поддерживать градиент температуры в требуемых пределах.

Наличие тепловых экранов позволяет избежать охлаждения блока реактора-испарителя за счет излучения, чрезмерного нагрева самого привода, а также выноса металлического магния в систему выхода газов.

Внутренняя поверхность реактора снабжена ребрами. По поверхности ребер, при вращении реактора, происходит пересыпание загруженного продукта, в результате чего поглощающая поверхность пентаоксида увеличивается. Поглощение паров магния пентаоксидом происходит из всего объема реактора.

В отличие от прототипа, имеющего реактор, расположенный под углом к горизонту и рассчитанного на осуществление непрерывного процесса, предлагаемое устройство имеет блок испаритель-реактор, расположенный горизонтально, и рассчитано на осуществление периодического процесса, но имеет преимущество, которое позволяет точно выдерживать сложный температурно-временной режим до полного восстановления тантала из пентаоксида, в том числе и в одну стадию.

В предлагаемом устройстве испаритель и реактор выполнены как секции единого блока, такая конструкция позволяет избежать использования выносного испарителя, трубопровода для подачи парогазовой смеси в реактор и, соответственно, избежать потерь парообразного магния при транспортировке его в реактор.

Испаритель вращается вместе с реактором, при этом испаряемый расплавленный магний перемешивается и его поверхность постоянно обновляется. Перемешивание испаряемого магния позволяет избежать образования на его поверхности пленки оксида, наличие которой служит причиной уменьшения скорости испарения. Перемешивание испаряемого магния позволяет более эффективно использовать объем испарителя, увеличивая площадь испаряющей поверхности.

Испаритель может быть изготовлен из материала, смачиваемого жидким магнием, например из тантала, что в совокупности с вращательным движением испарителя позволяет получить большую поверхность испарения по сравнению с неподвижным испарителем.

Скорость испарения магния и, соответственно, скорость поступления парогазовой смеси в реактор регулируют сечением отверстия в перегородке между испарителем и реактором, скоростью подачи инертного газа в испаритель и температурой в испарителе.

Принципиальная схема оптимального исполнения предлагаемого устройства для получения порошка тантала конденсаторного сорта приведена на чертеже. Устройство содержит трубчатый реактор (1) и испаритель (2).

Реактор и испаритель выполнены как секции единого блока и сообщаются между собой посредством отверстия в перегородке (3), разделяющей испаритель и реактор. Внутренняя поверхность реактора имеет ребра (4). Реактор и испаритель помещены в цилиндрическую реторту (5), которая имеет крышку (6) с устройством (7) для уплотнения вала (8) привода вращения реактора и испарителя. Со стороны ввода привода реторта имеет тепловые экраны (9). Вал (8) выполнен полым и предназначен также для подачи аргона в испаритель. Для выпуска аргона из устройства предназначен штуцер (10). Устройство обогревается при помощи печи (11).

Устройство работает следующим образом. В реактор (1) загружают пентаоксид тантала или танталовый порошок, в испаритель (2) загружают металлический магний. Блок испарения и восстановления в сборе с валом (8) помешают в реторту (5), которую закрывают крышкой и герметизируют. После того как устройство полностью собрано воздух внутри устройства заменяют аргоном. Реторту (5) помещают в печь (11) и разогревают до требуемой температуры, включают двигатель привода вращения блока реактора и испарителя, устанавливают требуемую скорость подачи аргона в испаритель. Далее проводят процесс восстановления при перемешивании восстанавливаемого продукта и испаряемого расплавленного магния, соблюдая заданный температурно-временной режим. После завершения процесса восстановления устройство охлаждают, разбирают, восстановленный продукт выгружают из реактора и подвергают дальнейшей переработке. Устройство зачищают, и цикл восстановления повторяют.

Устройство для получения порошка тантала конденсаторного сорта, содержащее обогреваемый вращающийся трубчатый реактор с приводом вращения и испаритель магния, отличающееся тем, что испаритель и реактор, имеющий на внутренней поверхности ребра, выполнены в виде секций единого горизонтально расположенного блока, разделены между собой перегородкой с центральным отверстием и помещены в герметичную реторту, снабженную теплозащитными экранами, расположенными со стороны ввода привода вращения, и обогреваемую печью с зональным нагревом.



 

Похожие патенты:

Изобретение относится к устройству для термохимических процессов обработки углеродных зерненых материалов, в частности активации древесного угля в производстве активных углей.

Изобретение относится к топочной камере для твердого материала, вращающейся вокруг своего продольного направления, в частности к камере швелевания для отходов. .

Изобретение относится к аппаратному оформлению термохимических процессов обработки зернистых материалов, в частности процессов карбонизации и активации в производстве активных углей.

Изобретение относится к оборудованию, предназначенному для термообработки материалов, например фтористого алюминия, а конкретно к вращающимся печам. .
Изобретение относится к получению порошков клапанных металлов. .
Изобретение относится к переработке плюмбомикролитового концентрата с получением оксидных соединений тантала и ниобия и соли свинца (II). .

Изобретение относится к порошковой металлургии, в частности к способу производства порошка тантала и устройству для его осуществления. .
Изобретение относится к редкометаллической промышленности, а именно к технологии получения металлического тантала металлотермическим восстановлением его солей. .

Изобретение относится к области порошковой металлургии, в частности касается способа производства порошка тантала высокой химической чистоты. .
Изобретение относится к порошковой металлургии и касается способа получения порошка тантала, пригодного для изготовления конденсаторов, натриетермическим восстановлением тантала из фтортанталата.

Изобретение относится к области извлечения и концентрирования тория из отходов процесса переработки лопаритовых концентратов - отработанного расплава солевого оросительного фильтра (СОФ) процесса хлорирования лопаритовых концентратов.

Изобретение относится к металлургии редких металлов, в частности к способу хлорного разложения ниобий-танталсодержащего сырья с получением хлоридов ниобия и/или тантала и устройствам для осуществления процесса хлорирования.

Изобретение относится к цветной металлургии и может быть использовано при получении металлотермическим восстановлением высокочистых порошков тантала и ниобия с большой величиной удельной поверхности.

Изобретение относится к гидрометаллургической переработке рудных концентратов. .
Изобретение относится к металлургии редких тугоплавких металлов, а именно к способам получения нанодисперсных порошков молибдена из его соединений восстановлением с использованием газообразных восстановителей.
Наверх